1
|
Li J, Shi L, Vasseur L, Zhao Q, Chen J, You M, You S. Genetic analyses reveal regional structure and demographic expansion of the predominant tea pest Empoasca onukii (Hemiptera: Cicadellidae) in China. PEST MANAGEMENT SCIENCE 2022; 78:2838-2850. [PMID: 35393736 DOI: 10.1002/ps.6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The tea green leafhopper, Empoasca onukii Matsuda, is the most destructive insect pest of tea plantations in East Asia. Despite its economic importance and previous studies on this species, it remains unclear as to how this small-sized pest can have such wide range. RESULTS By sequencing three mitochondrial genes and 17 microsatellite loci, we revealed the regional structure and demographic expansion of 59 E. onukii populations in China. Bayesian analysis of population genetic structure (BAPS) on microsatellites identified four genetic groups with spatial discontinuities, while analysis on mitochondrial genes inferred five nested and differentiated clusters. Both the Mantel test and the generalized linear model indicated a significant pattern of isolation by geographic distance in E. onukii populations. Based on the approximate Bayesian computation approach, E. onukii was found to have originated from southwestern China and expanded northward and eastward. While MIGRATE-N and Bayesian stochastic search variable selection (BSSVS) procedure in BEAST confirmed the possible eastward and northward dispersal from Yunnan, they also detected more gene flow from the derived populations in central and southeastern China. CONCLUSION Our results suggest that the current distribution and structure of E. onukii is complicatedly influenced by human activities of cultivation, wide dissemination of tea in ancient China as well as recent transportation of tea seedlings for establishing new tea plantations. Insights into genetic differentiation and demographic expansion patterns from this study provide an important basis for the development of area-wide management of the E. onukii populations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Jie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
2
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
3
|
Audusseau H, Baudrin G, Shaw MR, Keehnen NLP, Schmucki R, Dupont L. Ecology and Genetic Structure of the Parasitoid Phobocampe confusa (Hymenoptera: Ichneumonidae) in Relation to Its Hosts, Aglais Species (Lepidoptera: Nymphalidae). INSECTS 2020; 11:insects11080478. [PMID: 32731507 PMCID: PMC7469161 DOI: 10.3390/insects11080478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023]
Abstract
The biology of parasitoids in natural ecosystems remains very poorly studied, though they are key species for their functioning. Here we focused on Phobocampe confusa, a Nymphalini specialist, responsible for high mortality rates in charismatic butterfly species in Europe (genus Aglais). We studied its ecology and genetic structure in connection with those of its host butterflies in Sweden. To this aim, we gathered data from 428 P. confusa individuals reared from 6094 butterfly larvae (of A. urticae, A. io, and in two occasions of Araschnia levana) collected over two years (2017 and 2018) and across 19 sites distributed along a 500 km latitudinal gradient. We found that P. confusa is widely distributed along the latitudinal gradient. Its distribution seems constrained over time by the phenology of its hosts. The large variation in climatic conditions between sampling years explains the decrease in phenological overlap between P. confusa and its hosts in 2018 and the 33.5% decrease in the number of butterfly larvae infected. At least in this study, P. confusa seems to favour A. urticae as host. While it parasitized nests of A. urticae and A. io equally, the proportion of larvae parasitized is significantly higher for A. urticae. At the landscape scale, P. confusa is almost exclusively found in vegetated open land and near deciduous forests, whereas artificial habitats are negatively correlated with the likelihood of a nest to be parasitized. The genetic analyses on 89 adult P. confusa and 87 adult A. urticae using CO1 and AFLP markers reveal a low genetic diversity in P. confusa and a lack of genetic structure in both species, at the scale of our sampling. Further genetic studies using high-resolution genomics tools will be required to better understand the population genetic structure of P. confusa, its biotic interactions with its hosts, and ultimately the stability and the functioning of natural ecosystems.
Collapse
Affiliation(s)
- Hélène Audusseau
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden;
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK;
- Correspondence:
| | - Gaspard Baudrin
- Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut de Recherche pour le Développement, Institut d’Écologie et des Sciences de l’Environnement de Paris, Univ Paris-Est Créteil, F-94010 Creteil, France; (G.B.); (L.D.)
- Institut d’Écologie et des Sciences de l’Environnement de Paris, Sorbonne Université, F-75005 Paris, France
- Institut d’Écologie et des Sciences de l’Environnement de Paris, Université de Paris, F-75013 Paris, France
| | - Mark R. Shaw
- National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF, UK;
| | | | - Reto Schmucki
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK;
| | - Lise Dupont
- Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut de Recherche pour le Développement, Institut d’Écologie et des Sciences de l’Environnement de Paris, Univ Paris-Est Créteil, F-94010 Creteil, France; (G.B.); (L.D.)
- Institut d’Écologie et des Sciences de l’Environnement de Paris, Sorbonne Université, F-75005 Paris, France
- Institut d’Écologie et des Sciences de l’Environnement de Paris, Université de Paris, F-75013 Paris, France
| |
Collapse
|
4
|
Wei SJ, Zhou Y, Fan XL, Hoffmann AA, Cao LJ, Chen XX, Xu ZF. Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host. Ecol Evol 2017; 7:5400-5409. [PMID: 28770077 PMCID: PMC5528221 DOI: 10.1002/ece3.3097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
Genetic comparisons of parasitoids and their hosts are expected to reflect ecological and evolutionary processes that influence the interactions between species. The parasitoid wasp, Cotesia vestalis, and its host diamondback moth (DBM), Plutella xylostella, provide opportunities to test whether the specialist natural enemy migrates seasonally with its host or occurs as resident population. We genotyped 17 microsatellite loci and two mitochondrial genes for 158 female adults of C. vestalis collected from 12 geographical populations, as well as nine microsatellite loci for 127 DBM larvae from six separate sites. The samplings covered both the likely source (southern) and immigrant (northern) areas of DBM from China. Populations of C. vestalis fell into three groups, pointing to isolation in northwestern and southwestern China and strong genetic differentiation of these populations from others in central and eastern China. In contrast, DBM showed much weaker genetic differentiation and high rates of gene flow. TESS analysis identified the immigrant populations of DBM as showing admixture in northern China. Genetic disconnect between C. vestalis and its host suggests that the parasitoid did not migrate yearly with its host but likely consisted of resident populations in places where its host could not survive in winter.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Yuan Zhou
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China.,College of Agriculture South China Agricultural University Guangzhou China
| | - Xu-Lei Fan
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Parkville VIC Australia
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Xue-Xin Chen
- Institute of Insect Sciences Zhejiang University Hangzhou China
| | - Zai-Fu Xu
- College of Agriculture South China Agricultural University Guangzhou China
| |
Collapse
|