1
|
Meyer AR, Koch NM, McDonald T, Stanton DE. Symbionts out of sync: Decoupled physiological responses are widespread and ecologically important in lichen associations. SCIENCE ADVANCES 2024; 10:eado2783. [PMID: 38875327 PMCID: PMC11177896 DOI: 10.1126/sciadv.ado2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
A core vulnerability in symbioses is the need for coordination between the symbiotic partners, which are often assumed to be closely physiologically integrated. We critically re-examine this assumed integration between symbionts in lichen symbioses, recovering a long overlooked yet fundamental physiological asymmetry in carbon balance. We examine the physiological, ecological, and transcriptional basis of this asymmetry in the lichen Evernia mesomorpha. This carbon balance asymmetry depends on hydration source and aligns with climatic range limits. Differences in gene expression across the E. mesomorpha symbiosis suggest that the physiologies of the primary lichen symbionts are decoupled. Furthermore, we use gas exchange data to show that asymmetries in carbon balance are widespread and common across evolutionarily disparate lichen associations. Using carbon balance asymmetry as an example, we provide evidence for the wide-ranging importance of physiological asymmetries in symbioses.
Collapse
Affiliation(s)
- Abigail R Meyer
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Natália M Koch
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Tami McDonald
- Department of Biology, Saint Catherine University, Saint Paul, MN 55105, USA
| | - Daniel E Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
2
|
Styburski J, Skubała K. Do urban air pollutants induce changes in the thallus anatomy and affect the photosynthetic efficiency of the nitrophilous lichen Physcia adscendens? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112336-112346. [PMID: 37831253 PMCID: PMC10643396 DOI: 10.1007/s11356-023-30194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Lichens are symbiotic organisms that are generally sensitive to air pollution due to their specific biological and physiological features. Physcia adscendens is a nitrophilous lichen well-known for being resistant to air pollution associated with progressive anthropopressure. The aim of this study was to investigate the effect of nitrogen oxides and suspended particulate matter (PM10 and PM2.5) on anatomical structure of the thallus and photobiont's photosynthetic efficiency in P. adscendens inhabiting sites that differ in terms of air pollution level and thereby to determine the relevance of these pollutants for shaping the structure of the thallus and the physiological condition of the photosynthetic partner. We found that P. adscendens from polluted sites had increased thickness of the algal layer and the larger size of the algae cells, but a much lower ratio of the algal layer to the whole thallus. Lichens from highly polluted sites had also higher photosynthetic efficiency, which indicates a relatively good physiological condition of the photobiont. This indicates that the photobiont of P. adscendens is well-adapted to function under air pollution stress which may contribute to its success in colonizing polluted sites. Both changes in the anatomy of the lichen thallus and the efficiency of photosynthesis may be related to the enrichment of the environment with nitrogen. The increased photosynthetic efficiency as well as investment in the size of photobiont cells and growth mycobiont hyphae confirms that P. adscendens is well-adapted to urban conditions; however, the mechanism behind those adaptations needs more focus in the context of global environmental changes.
Collapse
Affiliation(s)
- Jakub Styburski
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Kaja Skubała
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Stanton DE, Ormond A, Koch NM, Colesie C. Lichen ecophysiology in a changing climate. AMERICAN JOURNAL OF BOTANY 2023; 110:e16131. [PMID: 36795943 DOI: 10.1002/ajb2.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Lichens are one of the most iconic and ubiquitous symbioses known, widely valued as indicators of environmental quality and, more recently, climate change. Our understanding of lichen responses to climate has greatly expanded in recent decades, but some biases and constraints have shaped our present knowledge. In this review we focus on lichen ecophysiology as a key to predicting responses to present and future climates, highlighting recent advances and remaining challenges. Lichen ecophysiology is best understood through complementary whole-thallus and within-thallus scales. Water content and form (vapor or liquid) are central to whole-thallus perspectives, making vapor pressure differential (VPD) a particularly informative environmental driver. Responses to water content are further modulated by photobiont physiology and whole-thallus phenotype, providing clear links to a functional trait framework. However, this thallus-level perspective is incomplete without also considering within-thallus dynamics, such as changing proportions or even identities of symbionts in response to climate, nutrients, and other stressors. These changes provide pathways for acclimation, but their understanding is currently limited by large gaps in our understanding of carbon allocation and symbiont turnover in lichens. Lastly, the study of lichen physiology has mainly prioritized larger lichens at high latitudes, producing valuable insights but underrepresenting the range of lichenized lineages and ecologies. Key areas for future work include improving geographic and phylogenetic coverage, greater emphasis on VPD as a climatic factor, advances in the study of carbon allocation and symbiont turnover, and the incorporation of physiological theory and functional traits in our predictive models.
Collapse
Affiliation(s)
- Daniel E Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Amaris Ormond
- Global Change Institute, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH3 9FF, UK
| | - Natalia M Koch
- Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Claudia Colesie
- Global Change Institute, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH3 9FF, UK
| |
Collapse
|
4
|
Kono M, Kon Y, Ohmura Y, Satta Y, Terai Y. In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics 2020; 21:671. [PMID: 32993496 PMCID: PMC7526373 DOI: 10.1186/s12864-020-07086-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. RESULTS This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. CONCLUSION From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.
Collapse
Affiliation(s)
- Mieko Kono
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden.
| | - Yoshiaki Kon
- Tokyo Metropolitan Hitotsubashi High School, 1-12-13 Higashikanda, Chiyoda-ku, Tokyo, 101-0031, Japan
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Yoko Satta
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
5
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
6
|
Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat Microbiol 2019; 4:2184-2191. [PMID: 31591554 DOI: 10.1038/s41564-019-0567-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/21/2019] [Indexed: 12/28/2022]
Abstract
Phototrophic communities of photosynthetic algae or cyanobacteria and heterotrophic bacteria or fungi are pervasive throughout the environment1. How interactions between members contribute to the resilience and affect the fitness of phototrophic communities is not fully understood2,3. Here, we integrated metatranscriptomics, metabolomics and phenotyping with computational modelling to reveal condition-dependent secretion and cross-feeding of metabolites in a synthetic community. We discovered that interactions between members are highly dynamic and are driven by the availability of organic and inorganic nutrients. Environmental factors, such as ammonia concentration, influenced community stability by shifting members from collaborating to competing. Furthermore, overall fitness was dependent on genotype and streamlined genomes improved growth of the entire community. Our mechanistic framework provides insights into the physiology and metabolic response to environmental and genetic perturbation of these ubiquitous microbial associations.
Collapse
|
7
|
Hoffman AS, Albeke SE, McMurray JA, Evans RD, Williams DG. Nitrogen deposition sources and patterns in the Greater Yellowstone Ecosystem determined from ion exchange resin collectors, lichens, and isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:709-718. [PMID: 31150891 DOI: 10.1016/j.scitotenv.2019.05.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Over the past century, atmospheric nitrogen deposition (Ndep) has increased across the western United States due to agricultural and urban development, resulting in degraded ecosystem quality. Regional patterns of Ndep are often estimated by coupling direct measurements from large-scale monitoring networks and atmospheric chemistry models, but such efforts can be problematic in the western US because of complex terrain and sparse sampling. This study aimed not only to understand Ndep patterns in mountainous ecosystems but also to investigate whether isotope values of lichens and throughfall deposition can be used to determine Ndep sources, and serve as an additional tool in ecosystem health assessments. We measured Ndep amounts and δ15N in montane conifer forests of the Greater Yellowstone Ecosystem using canopy throughfall and bulk monitors and lichens. In addition, we examined patterns of C:N ratios in lichens as a possible indicator of lichen physiological condition. The isotopic signature of δ15N of Ndep helps to discern emission sources, because δ15N of NOx from combustion tends to be high (-5 to +25‰) while NHx from agricultural sources tends to be comparatively low (-40 to -10‰). Summertime Ndep increased with elevation and ranged from 0.26 to 1.66 kg ha-1. Ndep was higher than expected in remote areas. The δ15N values of lichens were typically -15.3 to -10‰ suggesting agriculture as a primary emission source of deposition. Lichen %N, δ15N and C:N ratios can provide important information about Ndep sources and patterns over small spatial scales in complex terrain.
Collapse
Affiliation(s)
| | - Shannon E Albeke
- University of Wyoming, Laramie, WY 82071, United States of America
| | - Jill A McMurray
- Bridger Teton National Forest, United States Forest Service, Pinedale, WY 82941, United States of America
| | - R David Evans
- School of Biological Sciences, Washington State University, Pullman, WA 99164, United States of America
| | - David G Williams
- University of Wyoming, Laramie, WY 82071, United States of America
| |
Collapse
|
8
|
Černajová I, Škaloud P. The first survey of Cystobasidiomycete yeasts in the lichen genus Cladonia; with the description of Lichenozyma pisutiana gen. nov., sp. nov. Fungal Biol 2019; 123:625-637. [PMID: 31416582 DOI: 10.1016/j.funbio.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022]
Abstract
The view of lichens as a symbiosis only between a mycobiont and a photobiont has been challenged by discoveries of diverse associated organisms. Specific basidiomycete yeasts in the cortex of a range of macrolichens were hypothesized to influence the lichens' phenotype. The present study explores the occurrence and diversity of cystobasidiomycete yeasts in the lichen genus Cladonia. We obtained seven cultures and 56 additional sequences using specific primers from 27 Cladonia species from all over Europe and performed phylogenetic analyses based on ITS, LSU and SSU rDNA loci. We revealed yeast diversity distinct from any previously reported. Representatives of Cyphobasidiales, Microsporomycetaceae and of an unknown group related to Symmetrospora have been found. We present evidence that the Microsporomycetaceae contains mainly lichen-associated yeasts. Lichenozyma pisutiana is circumscribed here as a new genus and species. We report the first known associations between cystobasidiomycete yeasts and Cladonia (both corticate and ecorticate), and find that the association is geographically widespread in various habitats. Our results also suggest that a great diversity of lichen associated yeasts remains to be discovered.
Collapse
Affiliation(s)
- Ivana Černajová
- Charles University, Faculty of Science, Department of Botany, Benátská 2, 12800 Praha 2, Czech Republic.
| | - Pavel Škaloud
- Charles University, Faculty of Science, Department of Botany, Benátská 2, 12800 Praha 2, Czech Republic
| |
Collapse
|
9
|
Gastropod grazing may prevent reintroduction of declining N-fixing epiphytic lichens in broadleaved deciduous forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Palmqvist K, Franklin O, Näsholm T. Symbiosis constraints: Strong mycobiont control limits nutrient response in lichens. Ecol Evol 2017; 7:7420-7433. [PMID: 28944027 PMCID: PMC5606882 DOI: 10.1002/ece3.3257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 11/07/2022] Open
Abstract
Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa-a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2-fixing cyanobacteria (Nostoc sp.)-as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N-fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO 2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.
Collapse
Affiliation(s)
- Kristin Palmqvist
- Department of Ecology and Environmental Science (EMG)Umeå UniversityUmeåSweden
| | - Oskar Franklin
- International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
| | - Torgny Näsholm
- Department of Forest Ecology and ManagementSwedish University of Agriculture Sciences (SLU)UmeåSweden
| |
Collapse
|