1
|
Teng T, Zheng Z, Jiao W, Liu N, Wang A, Liu M, Xie L, Yang Z, Hu J, Bao Z. Characterization and Functional Analysis of Fads Reveals Δ5 Desaturation Activity during Long-Chain Polyunsaturated Fatty Acid Biosynthesis in Dwarf Surf Clam Mulinia lateralis. Genes (Basel) 2024; 15:365. [PMID: 38540424 PMCID: PMC10970445 DOI: 10.3390/genes15030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 06/14/2024] Open
Abstract
Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.
Collapse
Affiliation(s)
- Tianhao Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Zhenghua Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Wenqian Jiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Ao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Mengjiao Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Le Xie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.T.); (Z.Z.); (A.W.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
2
|
Ribes-Navarro A, Kabeya N, Castro LFC, Gomes-dos-Santos A, Fonseca MM, Alberts-Hubatsch H, Hontoria F, Navarro JC, Monroig Ó. Examination of gammarid transcriptomes reveals a widespread occurrence of key metabolic genes from epibiont bdelloid rotifers in freshwater species. Open Biol 2023; 13:230196. [PMID: 37875161 PMCID: PMC10597677 DOI: 10.1098/rsob.230196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Previous data revealed the unexpected presence of genes encoding for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes in transcriptomes from freshwater gammarids but not in marine species, even though closely related species were compared. This study aimed to clarify the origin and occurrence of selected LC-PUFA biosynthesis gene markers across all published gammarid transcriptomes. Through systematic searches, we confirmed the widespread occurrence of sequences from seven elongases and desaturases involved in LC-PUFA biosynthesis, in transcriptomes from freshwater gammarids but not marine species, and clarified that such occurrence is independent from the gammarid species and geographical origin. The phylogenetic analysis established that the retrieved elongase and desaturase sequences were closely related to bdelloid rotifers, confirming that multiple transcriptomes from freshwater gammarids contain contaminating rotifers' genetic material. Using the Adineta steineri genome, we investigated the genomic location and exon-intron organization of the elongase and desaturase genes, establishing they are all genome-anchored and, importantly, identifying instances of horizontal gene transfer. Finally, we provide compelling evidence demonstrating Bdelloidea desaturases and elongases enable these organisms to perform all the reactions for de novo biosynthesis of PUFA and, from them, LC-PUFA, an advantageous trait when considering the low abundance of these essential nutrients in freshwater environments.
Collapse
Affiliation(s)
- Alberto Ribes-Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - L. Filipe C. Castro
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - André Gomes-dos-Santos
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M. Fonseca
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Hilke Alberts-Hubatsch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan C. Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
3
|
Ramos-Llorens M, Hontoria F, Navarro JC, Ferrier DEK, Monroig Ó. Functionally diverse front-end desaturases are widespread in the phylum Annelida. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159377. [PMID: 37517549 DOI: 10.1016/j.bbalip.2023.159377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Aquatic single-cell organisms have long been believed to be unique primary producers of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA). Multiple invertebrates including annelids have been discovered to possess methyl-end desaturases enabling key steps in the de novo synthesis of ω3 LC-PUFA, and thus potentially contributing to their production in the ocean. Along methyl-end desaturases, the repertoire and function of further LC-PUFA biosynthesising enzymes is largely missing in Annelida. In this study we examined the front-end desaturase gene repertoire across the phylum Annelida, from Polychaeta and Clitellata, major classes of annelids comprising most annelid diversity. We further characterised the functions of the encoded enzymes in selected representative species by using a heterologous expression system based in yeast, demonstrating that functions of Annelida front-end desaturases have highly diversified during their expansion in both terrestrial and aquatic ecosystems. We concluded that annelids possess at least two front-end desaturases with Δ5 and Δ6Δ8 desaturase regioselectivities, enabling all the desaturation reactions required to convert the C18 precursors into the physiologically relevant LC-PUFA such as eicosapentaenoic and arachidonic acids, but not docosahexaenoic acid. Such a gene complement is conserved across the different taxonomic groups within Annelida.
Collapse
Affiliation(s)
- Marc Ramos-Llorens
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - David E K Ferrier
- The Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, Fife KY16 8LB, UK
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
4
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
5
|
Lanza M, Casili G, Torre GLL, Giuffrida D, Rotondo A, Esposito E, Ardizzone A, Rando R, Bartolomeo G, Albergamo A, Vadalà R, Salvo A. Properties of a New Food Supplement Containing Actinia equina Extract. Antioxidants (Basel) 2020; 9:antiox9100945. [PMID: 33019631 PMCID: PMC7600189 DOI: 10.3390/antiox9100945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
Marine species represent a great source of biologically active substances; Actinia equina (AE), an Anthozoa Cnidaria belonging to the Actinidiae family, have been proposed as original food and have already been included in several cooking recipes in local Mediterranean shores, and endowed with excellent nutraceutical potential. The aim of this study was to investigate some unexplored features of AE, through analytical screening and an in-vitro and in-vivo model. An in-vitro study, made on RAW 264.7 stimulated with H2O2, showed that the pre-treatment with AE exerted an antioxidant action, reducing lipid peroxidation and up-regulating antioxidant enzymes. On the other hand, the in-vivo study over murine model demonstrated that the administration of AE extracts is able to reduce the carrageenan (CAR)-induced paw edema. Furthermore, the histological damage due to the neutrophil infiltration is prevented, and this highlights precious anti-inflammatory features of the interesting food-stuff. Moreover, it was assessed that AE extract modulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and The nuclear factor erythroid 2-related factor 2 (Nrf-2) pathways. In conclusion, our data demonstrated that thanks to the antioxidant and anti-inflammatory properties, AE extract could be used as a new food supplement for inflammatory pathology prevention.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Giovanna Loredana La Torre
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Daniele Giuffrida
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
- Correspondence: (D.G.); (E.E.); Tel.: +39-090-6765496 (D.G.); +39-090-6765212 (E.E.)
| | - Archimede Rotondo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
- Correspondence: (D.G.); (E.E.); Tel.: +39-090-6765496 (D.G.); +39-090-6765212 (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Rossana Rando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Giovanni Bartolomeo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, via P.le A. Moro 5, 00185 Roma, Italy;
| |
Collapse
|
6
|
Zhu KC, Song L, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional characterization, tissue distribution and nutritional regulation of the Elovl4 gene in golden pompano, Trachinotus ovatus (Linnaeus, 1758). Gene 2020; 766:145144. [PMID: 32916248 DOI: 10.1016/j.gene.2020.145144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The elongases of very long-chain fatty acids (Elovls) are involved in the rate-limiting of the carbon chain elongation reaction in fatty acid (FA) biosynthesis in vertebrates. One member of the Elovls family, Elovl4, has been regarded as a critical enzyme involved in the biosynthesis pathway of polyunsaturated fatty acids (PUFAs). To explore the role of Elovl4 in PUFA synthesis in Trachinotus ovatus, the cDNA of the Elovl4b gene is cloned from T. ovatus (ToElovl4b). The ORF of ToElovl4b was 918 bp and encoded 305 amino acid (aa) protein sequences. Sequence alignment showed that the deduced amino acids contained significant structural features of the Elovl4 family, such as a histidine box motif (HXXHH), multiple transmembrane domains and an endoplasmic reticulum (ER) retention signal. Moreover, phylogenetic analysis revealed that ToElovl4b was highly conserved with that of Rachycentron canadum Elovl4b. Moreover, heterologous expression in yeast demonstrated that ToElovl4b could efficiently elongate 18:2n-6, 18:3n-6 and 20:5n-3 FAs up to 20:2n-6, 20:3n-6 and 22:5n-3, respectively. Furthermore, the tissue expression profile indicated that mRNA expression of ToElovl4b was higher in the gonads and brain than in other tissues. Additionally, nutritional regulation suggested the highest mRNA levels of ToElovl4b in liver and brain were under feeding with 1:1 FO-SO (fish oil, FO; soybean oil, SO) and 1:1 FO-CO (corn oil, CO)), respectively. These new insights were useful for understanding the molecular basis and regulation of LC-PUFA biosynthesis in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Ling Song
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China.
| |
Collapse
|
7
|
Boyen J, Fink P, Mensens C, Hablützel PI, De Troch M. Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190645. [PMID: 32536309 DOI: 10.1098/rstb.2019.0645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By 2100, global warming is predicted to significantly reduce the capacity of marine primary producers for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. Primary consumers such as harpacticoid copepods (Crustacea) might mitigate the resulting adverse effects on the food web by increased LC-PUFA bioconversion. Here, we present a high-quality de novo transcriptome assembly of the copepod Platychelipus littoralis, exposed to changes in both temperature (+3°C) and dietary LC-PUFA availability. Using this transcriptome, we detected multiple transcripts putatively coding for LC-PUFA-bioconverting front-end fatty acid (FA) desaturases and elongases, and performed phylogenetic analyses to identify their relationship with sequences of other (crustacean) taxa. While temperature affected the absolute FA concentrations in copepods, LC-PUFA levels remained unaltered even when copepods were fed an LC-PUFA-deficient diet. While this suggests plasticity of LC-PUFA bioconversion within P. littoralis, none of the putative front-end desaturase or elongase transcripts was differentially expressed under the applied treatments. Nevertheless, the transcriptome presented here provides a sound basis for future ecophysiological research on harpacticoid copepods. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.
Collapse
Affiliation(s)
- Jens Boyen
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Patrick Fink
- Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, 50674 Köln, Germany.,Department Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research, Brückstraße 3a, 39118 Magdeburg, Germany.,Department River Ecology, Helmholtz Centre for Environmental Research, Brückstraße 3a, 39118 Magdeburg, Germany
| | - Christoph Mensens
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Pascal I Hablützel
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Marleen De Troch
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| |
Collapse
|
8
|
Lee MC, Choi BS, Kim MS, Yoon DS, Park JC, Kim S, Lee JS. An improved genome assembly and annotation of the Antarctic copepod Tigriopus kingsejongensis and comparison of fatty acid metabolism between T. kingsejongensis and the temperate copepod T. japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100703. [PMID: 32563028 DOI: 10.1016/j.cbd.2020.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Copepods in the genus Tigriopus are widely distributed in the intertidal zone worldwide. To assess differences in fatty acid (FA) metabolism among congeneric species in this genus inhabiting polar and temperate environments, we analyzed and compared FA profiles of the Antarctic copepod Tigriopus kingsejongensis and the temperate copepod T. japonicus. Higher amounts of total FAs were found in the Antarctic copepod T. kingsejongensis than the temperate copepod T. japonicus under administration of the identical amount of Tetraselmis suecica. To determine the genomic basis for this, we identified fatty acid metabolism-related genes in an improved genome of T. kingsejongensis. The total length of the assembled genome was approximately 338 Mb with N50 = 1.473 Mb, 938 scaffolds, and a complete Benchmarking Universal Single-Copy Orthologs value of 95.8%. A total of 25,470 genes were annotated using newly established pipeline. We identified eight elongation of very long-chain fatty acid protein (Elovl) genes and nine fatty acid desaturase (Fad) genes in the genome of T. kingsejongensis. In addition, fatty acid profiling suggested that the duplicated Δ5/6 desaturase gene in T. kingsejongensis is likely to play an essential role in synthesis of different FAs in T. kingsejongensis to those in T. japonicus. However, further experimental research is required to validate our in silico findings. This study provides a better understanding of fatty acid metabolism in the Antarctic copepod T. kingsejongensis.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Rivera-Pérez C, Valenzuela-Quiñonez F, Caraveo-Patiño J. Comparative and functional analysis of desaturase FADS1 (∆5) and FADS2 (∆6) orthologues of marine organisms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100704. [PMID: 32554222 DOI: 10.1016/j.cbd.2020.100704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Fatty acid desaturases are key enzymes involved in unsaturated fatty acid biosynthesis, which insert double bonds at specific positions of fatty acids, playing a pivotal role in unsaturated fatty acid synthesis required for membrane lipid fluidity. The ∆5 and ∆6 desaturases are responsible for producing long chain-polyunsaturated fatty acids (LC-PUFA) through their precursors α-linolenic acid and linoleic acid in organisms lacking or with very low ability to synthesize LC-PUFA by themselves. Extensive studies of fatty acid desaturases are available in model organisms, such as humans and mouse; however, the diversity of these genes in the marine biodiversity is less known. This study performed an exhaustive analysis to identify the ∆5 and ∆6 desaturases in the available marine genomes in databases, as well as transcriptomes and EST databases, and their coding sequences were compared to the well-characterized ∆5 and ∆6 desaturases from humans. The FADS1 and FADS2 genetic structures are well conserved among all the organisms analyzed. A common amino acid pattern was identified to discriminate between ∆5 and ∆6 desaturases. The analysis of the conserved motif involved in catalysis showed that 20% of the desaturases, ∆5 and ∆6, have lost motifs required for catalysis. Additionally, bifunctional ∆5/∆6 desaturases were able to be identified by amino acid sequence patterns found in previously described enzymes. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these marine organism enzymes.
Collapse
Affiliation(s)
| | | | - Javier Caraveo-Patiño
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
| |
Collapse
|
10
|
Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, Jaya-Ram A, Shu-Chien AC. Molecular cloning, phylogenetic analysis and functional characterisation of an Elovl7-like elongase from a marine crustacean, the orange mud crab (Scylla olivacea). Comp Biochem Physiol B Biochem Mol Biol 2019; 232:60-71. [DOI: 10.1016/j.cbpb.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
|
11
|
Surm JM, Smith HL, Madio B, Undheim EA, King GF, Hamilton BR, Burg CA, Pavasovic A, Prentis PJ. A process of convergent amplification and tissue‐specific expression dominates the evolution of toxin and toxin‐like genes in sea anemones. Mol Ecol 2019; 28:2272-2289. [DOI: 10.1111/mec.15084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Joachim M. Surm
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
- Institute of Health and Biomedical Innovation Queensland University of Technology Kelvin Grove Queensland Australia
| | - Hayden L. Smith
- Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences Queensland University of Technology Brisbane Queensland Australia
- Institute for Future Environments Queensland University of Technology Brisbane Queensland Australia
| | - Bruno Madio
- Institute for Molecular Bioscience University of Queensland Brisbane Queensland Australia
| | - Eivind A.B. Undheim
- Centre for Advanced Imaging University of Queensland Saint Lucia Queensland Australia
| | - Glenn F. King
- Institute for Molecular Bioscience University of Queensland Brisbane Queensland Australia
| | - Brett R. Hamilton
- Centre for Advanced Imaging University of Queensland Saint Lucia Queensland Australia
- Centre for Microscopy and Microanalysis University of Queensland Saint Lucia Queensland Australia
| | - Chloé A. Burg
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
- Institute of Health and Biomedical Innovation Queensland University of Technology Kelvin Grove Queensland Australia
| | - Ana Pavasovic
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
| | - Peter J. Prentis
- Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences Queensland University of Technology Brisbane Queensland Australia
- Institute for Future Environments Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|