1
|
Ma LL, Seibold S, Cadotte MW, Zou JY, Song J, Mo ZQ, Tan SL, Ye LJ, Zheng W, Burgess KS, Chen ZF, Liu DT, Yang XL, Shi XC, Zhao W, Liu J, Li DZ, Gao LM, Luo YH. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173343. [PMID: 38777069 DOI: 10.1016/j.scitotenv.2024.173343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.
Collapse
Affiliation(s)
- Liang-Liang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Seibold
- TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jia-Yun Zou
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany; Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Jie Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Qiong Mo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Lin Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Jiang Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Tuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xing-Liang Yang
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Lian-Ming Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| | - Ya-Huang Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| |
Collapse
|
2
|
Karbarz M, Szlachcikowska D, Zapał A, Leśko A. Unlocking the Genetic Identity of Endangered Paphiopedilum Orchids: A DNA Barcoding Approach. Genes (Basel) 2024; 15:689. [PMID: 38927625 PMCID: PMC11202981 DOI: 10.3390/genes15060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Orchids of the genus Paphiopedilum, also called slippers, are among the most valued representatives of the Orchidaceae family due to their aesthetic qualities. Due to overexploitation, deforestation, and illegal trade in these plants, especially in the vegetative phase, Paphiopedilum requires special protection. This genus is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Their precise identification is of great importance for the preservation of genetic resources and biodiversity of the orchid family (Orchidaceae). Therefore, the main objective of the study was to investigate the usefulness of the DNA barcoding technique for the identification of endangered orchids of the genus Paphiopedilum and to determine the effectiveness of five loci: matK, rbcL, ITS2, atpF-atpH and trnH-psbA as potential molecular markers for species of this genus. Among single locus barcodes, matK was the most effective at identifying species (64%). Furthermore, matK, ITS2, matK + rbcL, and matK + trnH-psbA barcodes can be successfully used as a complementary tool to identify Paphiopedilum orchids while supporting morphological data provided by taxonomists.
Collapse
Affiliation(s)
| | - Dominika Szlachcikowska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, 35-225 Rzeszów, Poland
| | - Angelika Zapał
- Institute of Biology, University of Rzeszow, 35-959 Rzeszów, Poland
| | | |
Collapse
|
3
|
Chen S, Safiul Azam FM, Akter ML, Ao L, Zou Y, Qian Y. The first complete chloroplast genome of Thalictrum fargesii: insights into phylogeny and species identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1356912. [PMID: 38745930 PMCID: PMC11092384 DOI: 10.3389/fpls.2024.1356912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Introduction Thalictrum fargesii is a medicinal plant belonging to the genus Thalictrum of the Ranunculaceae family and has been used in herbal medicine in the Himalayan regions of China and India. This species is taxonomically challenging because of its morphological similarities to other species within the genus. Thus, herbal drugs from this species are frequently adulterated, substituted, or mixed with other species, thereby endangering consumer safety. Methods The present study aimed to sequence and assemble the entire chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform to better understand the genomic architecture, gene composition, and phylogenetic relationships within the Thalictrum. Results and discussion The cp genome was 155,929 bp long and contained large single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite structure. The cp genome contains 133 genes, including 88 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64 codons that encode 20 amino acids, the most preferred of which are alanine and leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U RNA-editing sites in the cp genome. Moreover, we discovered seven divergent hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug species and their contaminants. A comparative study with eight other species in the genus revealed that pafI and rps19 had highly variable sites in the cp genome of T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii was closely related to T. tenue and T. petaloidium. Conclusion Considering all these lines of evidence, our findings offer crucial molecular and evolutionary information that could play a significant role in further species identification, evolution, and phylogenetic studies on T. fargesii.
Collapse
Affiliation(s)
- Shixi Chen
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Fardous Mohammad Safiul Azam
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Mst. Lovely Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Li Ao
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Yuanchao Zou
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Ye Qian
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| |
Collapse
|
4
|
Fu QL, Mo ZQ, Xiang XG, Milne RI, Jacquemyn H, Burgess KS, Sun YN, Yan H, Qiu L, Yang BY, Tan SL. Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae). BMC PLANT BIOLOGY 2023; 23:645. [PMID: 38097946 PMCID: PMC10722739 DOI: 10.1186/s12870-023-04663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.
Collapse
Affiliation(s)
- Qing-Li Fu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001, Leuven, Belgium
| | - Kevin S Burgess
- College of Letters and Sciences, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Ya-Nan Sun
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hua Yan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Li Qiu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Bo-Yun Yang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shao-Lin Tan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
5
|
Yan M, Dong S, Gong Q, Xu Q, Ge Y. Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny. Sci Rep 2023; 13:16495. [PMID: 37779129 PMCID: PMC10543443 DOI: 10.1038/s41598-023-43638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
The Polygonatum genus represents a perennial herb with the Liliaceae family, boasting substantial economic and medicinal significance. The majority of Polygonatum plants exhibit notable similarity while lacking distinctive identifying characteristics, thus resulting in the proliferation of adulterated medicinal materials within the market. Within this study, we conducted an in-depth analysis of the complete chloroplast (cp) genomes of four Polygonatum plants and compared them with four closely akin species. The primary objectives were to unveil structural variations, species divergence, and the phylogenetic interrelations among taxa. The cp genomes of the four Polygonatum species were typified by a conventional quadripartite structure, incorporating a large single copy region (LSC), a small single copy region (SSC), and a pair of inverted repeat regions. In total, we annotated a range of 131 to 133 genes, encompassing 84 to 86 protein-coding genes, 38 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 0 to 2 pseudogenes (ycf1, infA). Our comparative analyses unequivocally revealed a remarkable consistency in gene order and GC content within the Polygonatum genus. Furthermore, we predicted a potential 59 to 64 RNA editing sites distributed across 22 protein-coding genes, with the ndhB gene exhibiting the most prominent propensity for RNA editing sites, boasting a tally of 15 sites. Notably, six regions of substantial potential variability were ascertained, characterized by elevated Pi values. Noteworthy, molecular markers for species identification, population genetic scrutiny, and phylogenetic investigations within the genus were identified in the form of the psaJ-rpl33 and trnS + trnT-psaD barcodes. The resultant phylogenetic tree unequivocally depicted the formation of a monophyletic clade comprising species within the evolutionary framework of Liliaceae, demonstrating closer evolutionary affinities with Maianthemum, Dracaeneae, and Asparageae. This comprehensive compendium of findings collectively contributes to the advancement of molecular species identification, elucidation of phylogenetic interrelationships, and the establishment of DNA barcodes tailored to the Polygonatum species.
Collapse
Affiliation(s)
- Meixiu Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qiuyi Gong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
6
|
Trujillo-Argueta S, del Castillo RF, Velasco-Murguía A. Testing the effectiveness of rbcLa DNA-barcoding for species discrimination in tropical montane cloud forest vascular plants (Oaxaca, Mexico) using BLAST, genetic distance, and tree-based methods. PeerJ 2022; 10:e13771. [PMID: 35990900 PMCID: PMC9390329 DOI: 10.7717/peerj.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
DNA-barcoding is a species identification tool that uses a short section of the genome that provides a genetic signature of the species. The main advantage of this novel technique is that it requires a small sample of tissue from the tested organism. In most animal groups, this technique is very effective. However, in plants, the recommended standard markers, such as rbcLa, may not always work, and their efficacy remains to be tested in many plant groups, particularly from the Neotropical region. We examined the discriminating power of rbcLa in 55 tropical cloud forest vascular plant species from 38 families (Oaxaca, Mexico). We followed the CBOL criteria using BLASTn, genetic distance, and monophyly tree-based analyses (neighbor-joining, NJ, maximum likelihood, ML, and Bayesian inference, BI). rbcLa universal primers amplified 69.0% of the samples and yielded 91.3% bi-directional sequences. Sixty-three new rbcLa sequences were established. BLAST discriminates 80.8% of the genus but only 15.4% of the species. There was nil minimum interspecific genetic distances in Quercus, Oreopanax, and Daphnopsis. Contrastingly, Ericaceae (5.6%), Euphorbiaceae (4.6%), and Asteraceae (3.3%) species displayed the highest within-family genetic distances. According to the most recent angiosperm classification, NJ and ML trees successfully resolved (100%) monophyletic species. ML trees showed the highest mean branch support value (87.3%). Only NJ and ML trees could successfully discriminate Quercus species belonging to different subsections: Quercus martinezii (white oaks) from Q. callophylla and Q. laurina (red oaks). The ML topology could distinguish species in the Solanaceae clade with similar BLAST matches. Also, the BI topology showed a polytomy in this clade, and the NJ tree displayed low-support values. We do not recommend genetic-distance approaches for species discrimination. Severe shortages of rbcLa sequences in public databases of neotropical species hindered effective BLAST comparisons. Instead, ML tree-based analysis displays the highest species discrimination among the tree-based analyses. With the ML topology in selected genera, rbcLa helped distinguish infra-generic taxonomic categories, such as subsections, grouping affine species within the same genus, and discriminating species. Since the ML phylogenetic tree could discriminate 48 species out of our 55 studied species, we recommend this approach to resolve tropical montane cloud forest species using rbcLa, as an initial step and improve DNA amplification methods.
Collapse
|
7
|
Cui WH, Du XY, Zhong MC, Fang W, Suo ZQ, Wang D, Dong X, Jiang XD, Hu JY. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China. HORTICULTURE RESEARCH 2022; 9:6497884. [PMID: 35031798 PMCID: PMC8788372 DOI: 10.1093/hr/uhab051] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
While roses are today among the most popular ornamental plants, the petals and fruits of some cultivars have flavored foods for millennia. The genetic origins of these edible cultivars remain poorly investigated. We collected the major varieties of edible roses available in China, assembled their plastome sequences, and phased the haplotypes for internal transcribed spacers (ITS1/ITS2) of the 18S-5.8S-26S nuclear ribosomal cistron. Our phylogenetic reconstruction using 88 plastid genomes, of primarily maternal origin, uncovered well-supported genetic relationships within Rosa, including all sections and all subgenera. We phased the ITS sequences to identify potential donor species ancestral to the development of known edible cultivars. The tri-parental Middle-Eastern origin of R. × damascena, the species most widely used in perfume products and food additives, was confirmed as a descendent of past hybridizations among R. moschata, R. gallica, and R. majalis/R. fedtschenkoana/R. davurica. In contrast, R. chinensis, R. rugosa, and R. gallica, in association with six other wild species, were the main donors for fifteen varieties of edible roses. The domesticated R. rugosa 'Plena' was shown to be a hybrid between R. rugosa and R. davurica, sharing a common origin with R. 'Fenghua'. Only R. 'Jinbian' and R. 'Crimson Glory' featured continuous flowering. All remaining cultivars of edible roses bloomed only once a year. Our study provides important resources for clarifying the origin of edible roses and suggests a future for breeding new cultivars with unique traits, such as continuous flowering.
Collapse
Affiliation(s)
- Wei-Hua Cui
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Mi-Cai Zhong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Wei Fang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Zhi-Quan Suo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Dan Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xue Dong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Xiao-Dong Jiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
- Corresponding authors. ,
| | - Jin-Yong Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
- Corresponding authors. ,
| |
Collapse
|
8
|
Trujillo-Argueta S, Del Castillo RF, Tejero-Diez D, Matias-Cervantes CA, Velasco-Murguía A. DNA barcoding ferns in an unexplored tropical montane cloud forest area of southeast Oaxaca, Mexico. Sci Rep 2021; 11:22837. [PMID: 34819549 PMCID: PMC8613246 DOI: 10.1038/s41598-021-02237-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA barcoding can be useful for species identification and phylogenetic analysis, but its effectivity has not been verified in most neotropical cloud forest plants. We tested three plastid barcodes, rbcLa, matK, and trnH-psbA, in selected pteridophytes, a well-represented group in these forests, from a little-explored area in Oaxaca, Mexico, applying the CBOL criteria for barcoding. We used BLASTn, genetic distance, and monophyly tree-based analyses employing neighbor-joining (NJ), maximum likelihood (ML), and Bayesian inference methods. Universal primers for rbcLa and trnH-psbA were successfully amplified and bi-directionally sequenced, but matK could not be amplified for most species. rbcLa showed the highest species discrimination in BLASTn (66.67%). trnH-psbA exhibited higher significant interspecific divergence values than rbcL and rbcLa + trnH-psbA (two-sample sign test, P value < 2.2e-16). Using NJ and ML phylogenetic trees, monophyletic species were successfully resolved (100%), differing only in support values and displaying full agreement with the most recent fern classification. ML trees showed the highest mean support value (80.95%). trnH-psbA was the only barcode that could detect the Elaphoglossoideae subfamily. Species discrimination did not increase using rbcLa + trnH-psbA. rbcLa is useful for fern barcoding, trnH-psbA is most helpful for phylogenetic analyses, and matK may not work as a universal barcoding marker.
Collapse
Affiliation(s)
- Sonia Trujillo-Argueta
- Instituto Politécnico Nacional CIIDIR Oaxaca, Oaxaca, Mexico.,Tecnológico Nacional de México-Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | | | - Daniel Tejero-Diez
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | | |
Collapse
|
9
|
Hu JL, Ci XQ, Liu ZF, Dormontt EE, Conran JG, Lowe AJ, Li J. Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Mol Ecol Resour 2021; 22:1478-1492. [PMID: 34752673 DOI: 10.1111/1755-0998.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Accurate identification of species from timber is an essential step to help control illegal logging and forest loss. However, current approaches to timber identification based on morphological and anatomical characteristics have limited species resolution. DNA barcoding is a proven tool for plant species identification, but there is a need to build reliable reference data across broad taxonomic and spatial scales. Here, we construct a species barcoding library consisting of 1550 taxonomically diverse timber species from 656 genera and 124 families, representing a comprehensive genetic reference data set for Chinese timber species and international commercial traded timber species, using four barcodes (rbcL, matK, trnH-psbA, and ITS2). The ITS2 fragment was found to be the most efficient locus for Chinese timber species identification among the four barcodes tested, both at the species and genus level, despite its low recovery rate. Nevertheless, the barcode combination matK+trnH-psbA+ITS2 was required as a complementary barcode to distinguish closely related species in complex data sets involving internationally traded timber species. Comparative analyses of family-level discrimination and species/genus ratios indicated that the inclusion of closely related species is an important factor affecting the resolution ability of barcodes for timber species verification. Our study indicates that although nuclear ITS2 is the most efficient single barcode for timber species authentication in China, complementary combinations like matK+trnH-psbA+ITS2 are required to provide broader discrimination power. These newly-generated sequences enrich the existing publicly available databases, especially for tropical and subtropical evergreen timber trees and this current timber species barcode reference library can serve as an important genetic resource for forestry monitoring, illegal logging prosecution and biodiversity projects.
Collapse
Affiliation(s)
- Jian-Lin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Eleanor E Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity (ACEBB) and Sprigg Geobiology Centre (SGC), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J Lowe
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
10
|
Meng F, Jiang W, Wu L, Zhang J, Yao X, Wu J, Guo X, Xing S. The complete chloroplast genome of Epilobium hirsutum L. (Onagraceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2174-2176. [PMID: 34263043 PMCID: PMC8253193 DOI: 10.1080/23802359.2021.1945968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The complete chloroplast genome sequence of Epilobium hirsutum L. is presented here. It is 161,111 bp in length and divides into four distinct regions: a small single-copy region (SSC) of 17,310 bp, a large single-copy region (LSC) of 89,117 bp, and a pair of inverted repeat (IR) regions of 27,342 bp. The chloroplast genome of E. hirsutum includes a total of 125 genes, consisting of 31 tRNA genes, 8 rRNA genes, and 86 protein-coding genes. A phylogenetic tree was generated to evaluate the evolutionary relationship between E. hirsutum and relevant species. The chloroplast genome sequencing and phylogenetic analysis offer genetic background for conservation and phylogenetic studied of this species.
Collapse
Affiliation(s)
- Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Cui N, Liao BS, Liang CL, Li SF, Zhang H, Xu J, Li XW, Chen SL. Complete chloroplast genome of Salvia plebeia: organization, specific barcode and phylogenetic analysis. Chin J Nat Med 2021; 18:563-572. [PMID: 32768163 DOI: 10.1016/s1875-5364(20)30068-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Salvia plebeia has been in use as traditional Chinese medicine (TCM) for more than 500 years. In this study, the complete chloroplast (cp) genome of S. plebeia was sequenced, assembled and compared to those of other five published Salvia cp genomes. It was found that the cp genome structure of S. plebeia was well conserved and had a total size of 151 062 bp. Four parameters were used to display the usage conditions of the codons of the amino acids in Salvia genus. Although the number of protein-coding genes in each species was the same, the total number of codons was different. Except for amino acids Trp and Met whose Relative Synonymous Codon Usage (RSCU) value of one condon was equal to 1, the remaining 19 amino acids had 1-3 preferred codons. The preferred codon names of each amino acid were coincident. The period size for the tandem repeats of six species ranged from 9 to 410 bp. Salvia cp genomes mainly possessed tandem repeats with a copy number less than or equal to 3. The sequence length of tandem repeats of the six species ranged from 25 to 824 bp. Highly viarable regions including four intergenic spacers and six partial genes were discovered as potential specific barcodes for Salvia species through cp genome-wide comparison. Finally, we performed phylogenetic analyses based on the complete cp genome and coding sequences respectively. These results provide information to help construct the cp genome library for Salvia, which may support studies of phylogenetics, DNA barcoding, population and transplastomics.
Collapse
Affiliation(s)
- Ning Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250300, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Central Laboratory, Shandong Academy of Chinese Medicine, Ji'nan 250014, China
| | - Bao-Sheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cong-Lian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250300, China
| | - Shi-Feng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xi-Wen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shi-Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Le DT, Zhang YQ, Xu Y, Guo LX, Ruan ZP, Burgess KS, Ge XJ. The utility of DNA barcodes to confirm the identification of palm collections in botanical gardens. PLoS One 2020; 15:e0235569. [PMID: 32735584 PMCID: PMC7394517 DOI: 10.1371/journal.pone.0235569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
The palm family (Arecaceae) is of high ecological and economic value, yet identification in the family remains a challenge for both taxonomists and horticulturalists. The family consists of approximately 2600 species across 181 genera and DNA barcoding may be a useful tool for species identification within the group. However, there have been few systematic evaluations of DNA barcodes for the palm family. In the present study, five DNA barcodes (rbcL, matK, trnH-psbA, ITS, ITS2) were evaluated for species identification ability across 669 samples representing 314 species and 100 genera in the Arecaceae, employing four analytical methods. The ITS gene region was found to not be a suitable barcode for the palm family, due in part, to low recovery rates and paralogous gene copies. Among the four analyses used, species resolution for ITS2 was much higher than that achieved with the plastid barcodes alone (rbcL, matK, trnH-psbA), and the barcode combination ITS2 + matK + rbcL gave the highest resolution among all single barcodes and their combinations, followed by ITS2 + matK. Among 669 palm samples analyzed, 110 samples (16.3%) were found to be misidentified. The 2992 DNA barcode sequences generated in this study greatly enriches the existing identification toolbox available to plant taxonomists that are interested in researching genetic relationships among palm taxa as well as for horticulturalists that need to confirm palm collections for botanical garden curation and horticultural applications. Our results indicate that the use of the ITS2 DNA barcode gene region provides a useful and cost-effective tool to confirm the identity of taxa in the Palm family.
Collapse
Affiliation(s)
- Duc-Thanh Le
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Xiu Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Kevin S. Burgess
- Department of Biology, Columbus State University, University System of Georgia, Columbus, Georgia, United States of America
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Gruenstaeudl M, Hartmaring Y. EMBL2checklists: A Python package to facilitate the user-friendly submission of plant and fungal DNA barcoding sequences to ENA. PLoS One 2019; 14:e0210347. [PMID: 30629718 PMCID: PMC6328100 DOI: 10.1371/journal.pone.0210347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Background The submission of DNA sequences to public sequence databases is an essential, but insufficiently automated step in the process of generating and disseminating novel DNA sequence data. Despite the centrality of database submissions to biological research, the range of available software tools that facilitate the preparation of sequence data for database submissions is low, especially for sequences generated via plant and fungal DNA barcoding. Current submission procedures can be complex and prohibitively time expensive for any but a small number of input sequences. A user-friendly software tool is needed that streamlines the file preparation for database submissions of DNA sequences that are commonly generated in plant and fungal DNA barcoding. Methods A Python package was developed that converts DNA sequences from the common EMBL and GenBank flat file formats to submission-ready, tab-delimited spreadsheets (so-called ‘checklists’) for a subsequent upload to the annotated sequence section of the European Nucleotide Archive (ENA). The software tool, titled ‘EMBL2checklists’, automatically converts DNA sequences, their annotation features, and associated metadata into the idiosyncratic format of marker-specific ENA checklists and, thus, generates files that can be uploaded via the interactive Webin submission system of ENA. Results EMBL2checklists provides a simple, platform-independent tool that automates the conversion of common DNA barcoding sequences into easily editable spreadsheets that require no further processing but their upload to ENA via the interactive Webin submission system. The software is equipped with an intuitive graphical as well as an efficient command-line interface for its operation. The utility of the software is illustrated by its application in four recent investigations, including plant phylogenetic and fungal metagenomic studies. Discussion EMBL2checklists bridges the gap between common software suites for DNA sequence assembly and annotation and the interactive data submission process of ENA. It represents an easy-to-use solution for plant and fungal biologists without bioinformatics expertise to generate submission-ready checklists from common DNA sequence data. It allows the post-processing of checklists as well as work-sharing during the submission process and solves a critical bottleneck in the effort to increase participation in public data sharing.
Collapse
|