1
|
Beltran RS, Hernandez KM, Condit R, Robinson PW, Crocker DE, Goetsch C, Kilpatrick AM, Costa DP. Physiological tipping points in the relationship between foraging success and lifetime fitness of a long-lived mammal. Ecol Lett 2023; 26:706-716. [PMID: 36888564 DOI: 10.1111/ele.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Keith M Hernandez
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Richard Condit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Chandra Goetsch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
2
|
The influence of prey availability on behavioral decisions and reproductive success of a central-place forager during lactation. J Theor Biol 2023; 560:111392. [PMID: 36572092 DOI: 10.1016/j.jtbi.2022.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Marine central-place foragers are increasingly faced with altered prey landscapes, necessitating predictions of the impact of such changes on behavior, reproductive success, and population dynamics. We used state-dependent behavioral life history theory implemented via Stochastic Dynamic Programming (SDP) to explore the influence of changes in prey distribution and energy gain from foraging on the behavior and reproductive success of a central place forager during lactation. Our work is motivated by northern fur seals (Callorhinus ursinus) because of the ongoing population decline of the Eastern Pacific stock and projected declines in biomass of walleye pollock (Gadus chalcogrammus), a key fur seal prey species in the eastern Bering Sea. We also explored how changes in female and pup metabolic rates, body size, and lactation duration affected model output to provide insight into traits that might experience selective pressure in response to reductions in prey availability. Simulated females adopted a central-place foraging strategy after an initial extended period spent on land (4.7-8.3 days). Trip durations increased as the high energy prey patch moved farther from land or when the energy gain from foraging decreased. Increases in trip duration adversely affected pup growth rates and wean mass despite attempts to compensate by increasing land durations. Metabolic rate changes had the largest impacts on pup wean mass, with reductions in a pup's metabolic rate allowing females to successfully forage at distances of 600+ km from land for up to 15+ days. Our results indicate that without physiological adaptations, a rookery is unlikely to be viable if the primary foraging grounds are 400 km or farther from the rookery. To achieve pup growth rates characteristic of a population experiencing rapid growth, model results indicate the primary foraging grounds need to be <150 km from the rookery.
Collapse
|
3
|
Pattinson NB, van de Ven TMFN, Finnie MJ, Nupen LJ, McKechnie AE, Cunningham SJ. Collapse of Breeding Success in Desert-Dwelling Hornbills Evident Within a Single Decade. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid anthropogenic climate change potentially severely reduces avian breeding success. While the consequences of high temperatures and drought are reasonably well-studied within single breeding seasons, their impacts over decadal time scales are less clear. We assessed the effects of air temperature (Tair) and drought on the breeding output of southern yellow-billed hornbills (Tockus leucomelas; hornbills) in the Kalahari Desert over a decade (2008–2019). We aimed to document trends in breeding performance in an arid-zone bird during a time of rapid global warming and identify potential drivers of variation in breeding performance. The breeding output of our study population collapsed during the monitoring period. Comparing the first three seasons (2008–2011) of monitoring to the last three seasons (2016–2019), the mean percentage of nest boxes that were occupied declined from 52% to 12%, nest success from 58% to 17%, and mean fledglings produced per breeding attempt from 1.1 to 0.4. Breeding output was negatively correlated with increasing days on which Tmax (mean maximum daily Tair) exceeded the threshold Tair at which male hornbills show a 50% likelihood of engaging in heat dissipation behavior [i.e., panting (Tthresh; Tair = 34.5°C)] and the occurrence of drought within the breeding season, as well as later dates for entry into the nest cavity (i.e., nest initiation) and fewer days post-hatch, spent incarcerated in the nest by the female parent. The apparent effects of high Tair were present even in non-drought years; of the 115 breeding attempts that were recorded, all 18 attempts that had ≥ 72% days during the attempt on which Tmax > Tthresh failed (equivalent to Tmax during the attempt ≥ 35.7°C). This suggests that global warming was likely the primary driver of the recent, rapid breeding success collapse. Based on current warming trends, the Tmax threshold of 35.7°C, above which no successful breeding attempts were recorded, will be exceeded during the entire hornbill breeding season by approximately 2027 at our study site. Therefore, our findings support the prediction that climate change may drive rapid declines and cause local extinctions despite the absence of direct lethal effects of extreme heat events.
Collapse
|
4
|
Leclaire S, Pineaux M, Blanchard P, White J, Hatch SA. Microbiota composition and diversity of multiple body sites vary according to reproductive performance in a seabird. Mol Ecol 2022; 32:2115-2133. [PMID: 35152516 DOI: 10.1111/mec.16398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
The microbiota is suggested to be a fundamental contributor to host reproduction and survival, but associations between microbiota and fitness are rare, especially for wild animals. Here, we tested the association between microbiota and two proxies of breeding performance in multiple body sites of the black-legged kittiwake, a seabird species. First we found that, in females, nonbreeders (i.e., birds that did not lay eggs) hosted different microbiota composition to that of breeders in neck and flank feathers, in the choanae, in the outer-bill and in the cloacae, but not in preen feathers and tracheae. These differences in microbiota might reflect variations in age or individual quality between breeders and nonbreeders. Second, we found that better female breeders (i.e., with higher body condition, earlier laying date, heavier eggs, larger clutch, and higher hatching success) had lower abundance of several Corynebacteriaceae in cloaca than poorer female breeders, suggesting that these bacteria might be pathogenic. Third, in females, better breeders had different microbiota composition and lower microbiota diversity in feathers, especially in preen feathers. They had also reduced dispersion in microbiota composition across body sites. These results might suggest that good breeding females are able to control their feather microbiota-potentially through preen secretions-more tightly than poor breeding females. We did not find strong evidence for an association between reproductive outcome and microbiota in males. Our results are consistent with the hypothesis that natural variation in the microbiota is associated with differences in host fitness in wild animals, but the causal relationships remain to be investigated.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution et Diversité Biologique (EDB) UMR5174 Université Toulouse 3 Paul Sabatier CNRS, IRD Toulouse France
| | - Maxime Pineaux
- Laboratoire Evolution et Diversité Biologique (EDB) UMR5174 Université Toulouse 3 Paul Sabatier CNRS, IRD Toulouse France
| | - Pierrick Blanchard
- Laboratoire Evolution et Diversité Biologique (EDB) UMR5174 Université Toulouse 3 Paul Sabatier CNRS, IRD Toulouse France
| | - Joël White
- Laboratoire Evolution et Diversité Biologique (EDB) UMR5174 Université Toulouse 3 Paul Sabatier CNRS, IRD Toulouse France
- ENSFEA Castanet‐Tolosan France
| | - Scott A Hatch
- Institute for Seabird Research and Conservation Anchorage AK 99516 USA
| |
Collapse
|
5
|
Determinants of moult haulout phenology and duration in southern elephant seals. Sci Rep 2021; 11:13331. [PMID: 34172785 PMCID: PMC8233432 DOI: 10.1038/s41598-021-92635-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Phenological shifts are among the most obvious biological responses to environmental change, yet documented responses for Southern Ocean marine mammals are extremely rare. Marine mammals can respond to environmental changes through phenological flexibility of their life-history events such as breeding and moulting. Southern elephant seals (Mirounga leonina) undergo an obligatory annual moult which involves the rapid shedding of epidermal skin and hair while seals fast ashore. We quantified the timing (phenology) and duration (the time from arrival ashore to departure) of the moult haulout of 4612 female elephant seals at Marion Island over 32 years. Using linear mixed-effects models, we investigated age, breeding state and environmental drivers of moult timing and haulout duration. We found no clear evidence for a temporal shift in moult phenology or its duration. Annual variation in moult arrival date and haulout duration was small relative to age and breeding effects, which explained more than 90% of the variance in moult arrival date and 25% in moult haulout duration. All environmental covariates we tested explained minimal variation in the data. Female elephant seals moulted progressively later as juveniles, but adults age 4 and older had similar moult start dates that depended on the breeding state of the female. In contrast, moult haulout duration was not constant with age among adults, but instead became shorter with increasing age. Moulting is energetically expensive and differences in the moult haulout duration are possibly due to individual variation in body mass and associated metabolizable energy reserves, although other drivers (e.g. hormones) may also be present. Individual-based data on moult arrival dates and haulout duration can be used as auxiliary data in demographic modelling and may be useful proxies of other important biological parameters such as body condition and breeding history.
Collapse
|
6
|
Smith MG, Riehl C. Intermittent breeding is associated with breeding group turnover in a cooperatively breeding bird. Oecologia 2020; 192:953-963. [PMID: 32285196 DOI: 10.1007/s00442-020-04635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
Intermittent breeding, in which an adult skips a breeding opportunity, can represent a non-adaptive constraint or an adaptive response to the tradeoff between current and future reproduction. In group-living animals, the social group may also affect the frequency of reproduction, but this possibility has received little attention. Here we use an 11-year data set to investigate intermittent breeding in the greater ani (Crotophaga major), a tropical bird that nests in stable breeding groups containing several unrelated co-breeding females. Population-wide, an average of 62% of females laid eggs in a given year (range 35-84%), and the average female failed to lay eggs once every 3.2 years. We found little support for the hypothesis that intermittent breeding reflects a tradeoff between current and future reproduction: breeding in year t did not affect a female's likelihood of breeding in year t + 1, and clutch size in year t did not affect clutch size in year t + 1. Increases in clutch size were associated with decreases in egg mass for eggs laid at the end of that clutch, but this did not affect subsequent nesting attempts. However, reproductive skipping was associated with changes in group membership. Females whose groups changed in composition after year t were significantly less likely to breed in year t + 1 than females whose groups remained stable. These results indicate that breeding group stability influences the frequency of reproduction, suggesting that transitions between groups may be costly to females and their mates.
Collapse
Affiliation(s)
- Maria G Smith
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Christina Riehl
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Lübcker N, Bloem LM, du Toit T, Swart P, de Bruyn PN, Swart AC, Millar RP. What’s in a whisker? High-throughput analysis of twenty-eight C19 and C21 steroids in mammalian whiskers by ultra-performance convergence chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1141:122028. [DOI: 10.1016/j.jchromb.2020.122028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
|
8
|
Yoshioka H, Tanaka T, Aranishi F, Izumi T, Fujihara M. Stochastic optimal switching model for migrating population dynamics. JOURNAL OF BIOLOGICAL DYNAMICS 2019; 13:706-732. [PMID: 31701818 DOI: 10.1080/17513758.2019.1685134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
An optimal switching control formalism combined with the stochastic dynamic programming is, for the first time, applied to modelling life cycle of migrating population dynamics with non-overlapping generations. The migration behaviour between habitats is efficiently described as impulsive switching based on stochastic differential equations, which is a new standpoint for modelling the biological phenomenon. The population dynamics is assumed to occur so that the reproductive success is maximized under an expectation. Finding the optimal migration strategy ultimately reduces to solving an optimality equation of the quasi-variational type. We show an effective linkage between our optimality equation and the basic reproduction number. Our model is applied to numerical computation of optimal migration strategy and basic reproduction number of an amphidromous fish Plecoglossus altivelis altivelis in Japan as a target species.
Collapse
Affiliation(s)
- Hidekazu Yoshioka
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
- Fisheries Ecosystem Project Center, Shimane University, Matsue, Japan
| | - Tomomi Tanaka
- Fisheries Ecosystem Project Center, Shimane University, Matsue, Japan
| | - Futoshi Aranishi
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
- Fisheries Ecosystem Project Center, Shimane University, Matsue, Japan
| | - Tomoki Izumi
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | |
Collapse
|