1
|
Lorenzana GP, Figueiró HV, Coutinho LL, Villela PMS, Eizirik E. Comparative assessment of genotyping-by-sequencing and whole-exome sequencing for estimating genetic diversity and geographic structure in small sample sizes: insights from wild jaguar populations. Genetica 2024; 152:133-144. [PMID: 39322785 DOI: 10.1007/s10709-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Collapse
Affiliation(s)
- Gustavo P Lorenzana
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil.
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Henrique V Figueiró
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, Brazil
| | | | - Priscilla M S Villela
- Centro de Genômica Funcional, ESALQ-USP, Piracicaba, Brazil
- EcoMol Consultoria e Projetos, Piracicaba, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
2
|
Pearman WS, Urban L, Alexander A. Commonly used Hardy-Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data. Mol Ecol Resour 2022; 22:2599-2613. [PMID: 35593534 PMCID: PMC9541430 DOI: 10.1111/1755-0998.13646] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Reduced representation sequencing (RRS) is a widely used method to assay the diversity of genetic loci across the genome of an organism. The dominant class of RRS approaches assay loci associated with restriction sites within the genome (restriction site associated DNA sequencing, or RADseq). RADseq is frequently applied to non‐model organisms since it enables population genetic studies without relying on well‐characterized reference genomes. However, RADseq requires the use of many bioinformatic filters to ensure the quality of genotyping calls. These filters can have direct impacts on population genetic inference, and therefore require careful consideration. One widely used filtering approach is the removal of loci that do not conform to expectations of Hardy–Weinberg equilibrium (HWE). Despite being widely used, we show that this filtering approach is rarely described in sufficient detail to enable replication. Furthermore, through analyses of in silico and empirical data sets we show that some of the most widely used HWE filtering approaches dramatically impact inference of population structure. In particular, the removal of loci exhibiting departures from HWE after pooling across samples significantly reduces the degree of inferred population structure within a data set (despite this approach being widely used). Based on these results, we provide recommendations for best practice regarding the implementation of HWE filtering for RADseq data sets.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Lara Urban
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Genome-wide SNPs detect fine-scale genetic structure in threatened populations of squirrel glider Petaurus norfolcensis. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAustralian arboreal mammals are experiencing significant population declines, particularly due to land clearing and resulting habitat fragmentation. The squirrel glider, Petaurus norfolcensis, is a threatened species in New South Wales, with a stronghold population in the Lake Macquarie Local Government Area (LGA) where fragmentation due to urbanization is an ongoing problem for the species conservation. Here we report on the use of squirrel glider mitochondrial (385 bp cytochrome b gene, 70 individuals) and nuclear DNA (6,834 SNPs, 87 individuals) markers to assess their population genetic structure and connectivity across 14 locations sampled in the Lake Macquarie LGA. The mitochondrial DNA sequences detected evidence of a historical genetic bottleneck, while the genome-wide SNPs detected significant population structure in the Lake Macquarie squirrel glider populations at scales as fine as one kilometer. There was no evidence of inbreeding within patches, however there were clear effects of habitat fragmentation and biogeographical barriers on gene flow. A least cost path analysis identified thin linear corridors that have high priority for conservation. These areas should be protected to avoid further isolation of squirrel glider populations and the loss of genetic diversity through genetic drift.
Collapse
|
4
|
Bootsma ML, Miller L, Sass GG, Euclide PT, Larson WA. The ghosts of propagation past: haplotype information clarifies the relative influence of stocking history and phylogeographic processes on contemporary population structure of walleye ( Sander vitreus). Evol Appl 2021; 14:1124-1144. [PMID: 33897825 PMCID: PMC8061267 DOI: 10.1111/eva.13186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Stocking of fish is an important tool for maintaining fisheries but can also significantly alter population genetic structure and erode the portfolio of within-species diversity that is important for promoting resilience and adaptability. Walleye (Sander vitreus) are a highly valued sportfish in the midwestern United States, a region characterized by postglacial recolonization from multiple lineages and an extensive history of stocking. We leveraged genomic data and recently developed analytical approaches to explore the population structure of walleye from two midwestern states, Minnesota and Wisconsin. We genotyped 954 walleye from 23 populations at ~20,000 loci using genotyping by sequencing and tested for patterns of population structure with single-SNP and microhaplotype data. Populations from Minnesota and Wisconsin were highly differentiated from each other, with additional substructure found in each state. Population structure did not consistently adhere to drainage boundaries, as cases of high intra-drainage and low inter-drainage differentiation were observed. Low genetic structure was observed between populations from the upper Wisconsin and upper Chippewa river watersheds, which are found as few as 50 km apart and were likely homogenized through historical stocking. Nevertheless, we were able to differentiate these populations using microhaplotype-based co-ancestry analysis, providing increased resolution over previous microsatellite studies and our other single SNP-based analyses. Although our results illustrate that walleye population structure has been influenced by past stocking practices, native ancestry still exists in most populations and walleye populations may be able to purge non-native alleles and haplotypes in the absence of stocking. Our study is one of the first to use genomic tools to investigate the influence of stocking on population structure in a nonsalmonid fish and outlines a workflow leveraging recently developed analytical methods to improve resolution of complex population structure that will be highly applicable in many species and systems.
Collapse
Affiliation(s)
- Matthew L. Bootsma
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Loren Miller
- Minnesota Department of Natural ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Greg G. Sass
- Office of Applied ScienceWisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWIUSA
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Present address:
Ted Stevens Marine Research InstituteAlaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationJuneauAKUSA
| |
Collapse
|
5
|
Lang AR, Boveng P, Quakenbush L, Robertson K, Lauf M, Rode KD, Ziel H, Taylor BL. Re-examination of population structure in Arctic ringed seals using DArTseq genotyping. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although Arctic ringed seals Phoca hispida hispida are currently abundant and broadly distributed, their numbers are projected to decline substantially by the year 2100 due to climate warming. While understanding population structure could provide insight into the impact of environmental changes on this subspecies, detecting demographically important levels of exchange can be difficult in taxa with high abundance. We used a next-generation sequencing approach (DArTseq) to genotype ~5700 single nucleotide polymorphisms in 79 seals from 4 Pacific Arctic regions. Comparison of the 2 most geographically separated strata (eastern Bering vs. northeastern Chukchi-Beaufort Seas) revealed a statistically significant level of genetic differentiation (FST = 0.001, p = 0.005) that, while small, was 1 to 2 orders of magnitude greater than expected based on divergence estimated for similarly sized populations connected by low (1% yr-1) dispersal. A relatively high proportion (72 to 88%) of individuals within these strata could be genetically assigned to their stratum of origin. These results indicate that demographically important structure may be present among Arctic ringed seals breeding in different areas, increasing the risk that declines in the number of seals breeding in areas most negatively affected by environmental warming could occur.
Collapse
Affiliation(s)
- AR Lang
- Ocean Associates, Inc., Arlington, VA 22207, USA, under contract to the Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - P Boveng
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA 98115, USA
| | - L Quakenbush
- Arctic Marine Mammal Program, Alaska Department of Fish and Game, Fairbanks, AK 99701, USA
| | - K Robertson
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - M Lauf
- Ocean Associates, Inc., Arlington, VA 22207, USA, under contract to the Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - KD Rode
- Alaska Science Center, US Geological Survey, Anchorage, AK 99508, USA
| | - H Ziel
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA 98115, USA
| | - BL Taylor
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Hess MK, Rowe SJ, Van Stijn TC, Henry HM, Hickey SM, Brauning R, McCulloch AF, Hess AS, Kirk MR, Kumar S, Pinares-Patiño C, Kittelmann S, Wood GR, Janssen PH, McEwan JC. A restriction enzyme reduced representation sequencing approach for low-cost, high-throughput metagenome profiling. PLoS One 2020; 15:e0219882. [PMID: 32243481 PMCID: PMC7122713 DOI: 10.1371/journal.pone.0219882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Microbial community profiles have been associated with a variety of traits, including methane emissions in livestock. These profiles can be difficult and expensive to obtain for thousands of samples (e.g. for accurate association of microbial profiles with traits), therefore the objective of this work was to develop a low-cost, high-throughput approach to capture the diversity of the rumen microbiome. Restriction enzyme reduced representation sequencing (RE-RRS) using ApeKI or PstI, and two bioinformatic pipelines (reference-based and reference-free) were compared to bacterial 16S rRNA gene sequencing using repeated samples collected two weeks apart from 118 sheep that were phenotypically extreme (60 high and 58 low) for methane emitted per kg dry matter intake (n = 236). DNA was extracted from freeze-dried rumen samples using a phenol chloroform and bead-beating protocol prior to RE-RRS. The resulting sequences were used to investigate the repeatability of the rumen microbial community profiles, the effect of laboratory and analytical method, and the relationship with methane production. The results suggested that the best method was PstI RE-RRS analyzed with the reference-free approach, which accounted for 53.3±5.9% of reads, and had repeatabilities of 0.49±0.07 and 0.50±0.07 for the first two principal components (PC1 and PC2), phenotypic correlations with methane yield of 0.43±0.06 and 0.46±0.06 for PC1 and PC2, and explained 41±8% of the variation in methane yield. These results were significantly better than for bacterial 16S rRNA gene sequencing of the same samples (p<0.05) except for the correlation between PC2 and methane yield. A Sensitivity study suggested approximately 2000 samples could be sequenced in a single lane on an Illumina HiSeq 2500, meaning the current work using 118 samples/lane and future proposed 384 samples/lane are well within that threshold. With minor adaptations, our approach could be used to obtain microbial profiles from other metagenomic samples.
Collapse
Affiliation(s)
- Melanie K. Hess
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Suzanne J. Rowe
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Hannah M. Henry
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Sharon M. Hickey
- AgResearch Limited, Ruakura Agricultural Centre, Hamilton, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Alan F. McCulloch
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Andrew S. Hess
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Michelle R. Kirk
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Sandeep Kumar
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Sandra Kittelmann
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Graham R. Wood
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Peter H. Janssen
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - John C. McEwan
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|