1
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Trejo‐Meléndez VJ, Ibarra‐Rendón J, Contreras‐Garduño J. The evolution of entomopathogeny in nematodes. Ecol Evol 2024; 14:e10966. [PMID: 38352205 PMCID: PMC10862191 DOI: 10.1002/ece3.10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding how parasites evolved is crucial to understand the host and parasite interaction. The evolution of entomopathogenesis in rhabditid nematodes has traditionally been thought to have occurred twice within the phylum Nematoda: in Steinernematidae and Heterorhabditidae families, which are associated with the entomopathogenic bacteria Xenorhabdus and Photorhabdus, respectively. However, nematodes from other families that are associated with entomopathogenic bacteria have not been considered to meet the criteria for "entomopathogenic nematodes." The evolution of parasitism in nematodes suggests that ecological and evolutionary properties shared by families in the order Rhabditida favor the convergent evolution of the entomopathogenic trait in lineages with diverse lifestyles, such as saprotrophs, phoretic, and necromenic nematodes. For this reason, this paper proposes expanding the term "entomopathogenic nematode" considering the diverse modes of this attribute within Rhabditida. Despite studies are required to test the authenticity of the entomopathogenic trait in the reported species, they are valuable links that represent the early stages of specialized lineages to entomopathogenic lifestyle. An ecological and evolutionary exploration of these nematodes has the potential to deepen our comprehension of the evolution of entomopathogenesis as a convergent trait spanning across the Nematoda.
Collapse
Affiliation(s)
- V. J. Trejo‐Meléndez
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Posgrado en Ciencias Biológicas, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
| | - J. Ibarra‐Rendón
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) – IrapuatoIrapuatoGuanajuatoMexico
| | - J. Contreras‐Garduño
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
3
|
Williams B, Nelson M, McRobert S, Fingerut J. An easy and inexpensive method for determining the rate of individual phoretic events of nematodes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000942. [PMID: 37811345 PMCID: PMC10556881 DOI: 10.17912/micropub.biology.000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Considering their limited locomotory capabilities, the cosmopolitan distribution of free-living nematodes may rely on phoretic dispersal. We describe a new, inexpensive device to investigate individual phoretic events of the nematode Caenorhabditis elegans using the pomace flies Drosophila melanogaster and Drosophila hydei over short time periods. Using our device, we replicated previous findings demonstrating that phoresis requires C. elegans to be in the dauer stage and capable of nictation. Additionally, we find that phoresis can happen on the order of seconds, and does not increase linearly with time of interaction. Using this approach can facilitate the investigation of nematode biogeography, which could provide useful insight into their, and their vector's, control.
Collapse
Affiliation(s)
- Benjamin Williams
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Matthew Nelson
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Scott McRobert
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Jonathan Fingerut
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Bartlow AW, Agosta SJ. Phoresy in animals: review and synthesis of a common but understudied mode of dispersal. Biol Rev Camb Philos Soc 2020; 96:223-246. [PMID: 32924275 DOI: 10.1111/brv.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
Phoresy is a type of interaction in which one species, the phoront, uses another species, the dispersal host, for transportation to new habitats or resources. Despite being a widespread behaviour, little is known about the ecology and evolution of phoresy. Our goal is to provide a comprehensive review of phoretic dispersal in animals and to bring renewed attention to this subject. We surveyed literature published between 1900 and 2020 to understand the extent of known higher-level taxonomic diversity (phyla, classes, and orders) and functional aspects of animals that use phoretic dispersal. Species dispersing phoretically have been observed in at least 13 animal phyla, 25 classes, and 60 orders. The majority of known phoronts are arthropods (Phylum Euarthropoda) in terrestrial habitats, but phoronts also occur in freshwater and marine environments. Marine phoronts may be severely under-represented in the literature due to the relative difficulty of studying these systems. Phoronts are generally small with low mobility and use habitats or resources that are ephemeral and/or widely dispersed. Many phoronts are also parasites. In general, animals that engage in phoresy use a wide variety of morphological and behavioural traits for locating, attaching to, and detaching from dispersal hosts, but the exact mechanisms behind these activities are largely unknown. In addition to diversity, we discuss the evolution of phoresy including the long-standing idea that it can be a precursor to parasitism and other forms of symbioses. Finally, we suggest several areas of future research to improve our understanding of phoresy and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- Andrew W Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, U.S.A
| | - Salvatore J Agosta
- Center for Environmental Studies, VCU Life Sciences, Virginia Commonwealth University, 1000 W. Cary St., Richmond, VA, 23284, U.S.A
| |
Collapse
|
5
|
Sun SJ, Kilner RM. Temperature stress induces mites to help their carrion beetle hosts by eliminating rival blowflies. eLife 2020; 9:e55649. [PMID: 32755542 PMCID: PMC7431131 DOI: 10.7554/elife.55649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Ecological conditions are known to change the expression of mutualisms though the causal agents driving such changes remain poorly understood. Here we show that temperature stress modulates the harm threatened by a common enemy, and thereby induces a phoretic mite to become a protective mutualist. Our experiments focus on the interactions between the burying beetle Nicrophorus vespilloides, an associated mite species Poecilochirus carabi and their common enemy, blowflies, when all three species reproduce on the same small vertebrate carrion. We show that mites compete with beetle larvae for food in the absence of blowflies, and reduce beetle reproductive success. However, when blowflies breed on the carrion too, mites enhance beetle reproductive success by eating blowfly eggs. High densities of mites are especially effective at promoting beetle reproductive success at higher and lower natural ranges in temperature, when blowfly larvae are more potent rivals for the limited resources on the carcass.
Collapse
Affiliation(s)
- Syuan-Jyun Sun
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Rebecca M Kilner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Nehring V, Teubner H, König S. Dose-independent virulence in phoretic mites that parasitize burying beetles. Int J Parasitol 2019; 49:759-767. [PMID: 31401062 DOI: 10.1016/j.ijpara.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023]
Abstract
Virulence, the negative impact of parasites on their hosts, typically increases with parasite dose. Parasites and hosts often compete for host resources and more parasites will consume more resources. Depending on the mechanism of competition, increasing host resources can benefit the host. Additional resources can also be harmful when the parasites are the main beneficiaries. Then, the parasites will thrive and virulence increases. While parasite dose is often easy to manipulate, it is less trivial to experimentally scale host resources. Here, we study a system with external host resources that can be easily manipulated: Nicrophorus burying beetles reproduce on vertebrate carcasses, with larger carcasses yielding more beetle offspring. Phoretic Poecilochirus mites reproduce alongside the beetles and reduce beetle fitness. The negative effect of mites could be due to competition for the carrion between beetle and mite offspring. We manipulated mite dose and carcass size to better understand the competition between the symbionts. We found that mite dose itself was not a strong predictor of virulence. Instead, the number of mite offspring determined beetle fitness. At larger doses, there was strong competition among adult parental mites as well as mite offspring. While increasing the carcass size increased both host and parasite fitness, it did surprisingly little to alleviate the negative effect that mites had on beetles. Instead, relative virulence was stronger on large carcasses, indicating that the parasites appropriate more of the additional resources. Our results demonstrate an ecological influence on the selection of parasites on their hosts and suggest that virulence can be dose-independent in principle.
Collapse
Affiliation(s)
- Volker Nehring
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany.
| | - Heide Teubner
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany
| | - Sandra König
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Heise P, Liu Y, Degenkolb T, Vogel H, Schäberle TF, Vilcinskas A. Antibiotic-Producing Beneficial Bacteria in the Gut of the Burying Beetle Nicrophorus vespilloides. Front Microbiol 2019; 10:1178. [PMID: 31244787 PMCID: PMC6563848 DOI: 10.3389/fmicb.2019.01178] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant human pathogens is a growing public concern and there is intense pressure to identify new antibacterial compounds that can be developed into antibiotics with novel mode of action. Evolutionary theory predicts that insects that have evolved to occupy sophisticated ecological niches by feeding and reproducing on carcasses will depend on their gut microbiome to prevent colonization by invading pathogens taken up with the diet. This inspired our hypothesis that the complex interactions between the core microbiome and the more flexible microbial communities dependent on the environment may promote the outsourcing of antibiotic synthesis to beneficial microbes. We tested this hypothesis by cultivating and characterizing bacteria isolated from the gut of the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses buried in the soil to avoid competitors such as fly maggots. The extracts of isolated bacteria were screened for activity against human pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. More than 400 strains were isolated, among which the crude extract of Serratia marcescens 2MH3-2 displayed promising activity against Staphylococcus aureus. Bioactivity-guided fractionation enabled purification of the primary antimicrobial compound of the extract. By LC-MS and NMR experiments, it was identified as serrawettin W2 (C38H61N5O9), the antibacterial and nematostatic activity of which was corroborated in our study. We postulate that this antibiotic could contribute to the control of both bacteria and phoretic nematodes in the gut, which compete for food when transferred to the carcass. Our study shows that the gut microbiome of N. vespilloides is a promising resource for the screening of antibiotic-producing bacteria.
Collapse
Affiliation(s)
- Philipp Heise
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Yang Liu
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Till F Schäberle
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|