1
|
Dahleh MMM, Araujo SM, Bortolotto VC, Torres SP, Machado FR, Meichtry LB, Musachio EAS, Guerra GP, Prigol M. The implications of exercise in Drosophila melanogaster: insights into Akt/p38 MAPK/Nrf2 pathway associated with Hsp70 regulation in redox balance maintenance. J Comp Physiol B 2023; 193:479-493. [PMID: 37500966 DOI: 10.1007/s00360-023-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory Human and Animal Bio Health, Federal University of Fronteira Sul, Realeza, PR, CEP 85770-000, Brazil
| | | | - Stéphanie Perreira Torres
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| |
Collapse
|
2
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
3
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
4
|
Nath Das P, Kumar Basu A, Guru Prasad N. Increasing adult density compromises survival following bacterial infections in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104415. [PMID: 35753428 DOI: 10.1016/j.jinsphys.2022.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The density-dependent prophylaxis hypothesis predicts that risk of pathogen transmission increases with increase in population density, and in response to this, organisms mount a prophylactic immune response when exposed to high density. This prophylactic response is expected to help organisms improve their chances of survival when exposed to pathogens. Alternatively, organisms living at high densities can exhibit compromised defense against pathogens due to lack of resources and density associated physiological stress; the crowding stress hypothesis. We housed adult Drosophila melanogaster flies at different densities and measured the effect this has on their post-infection survival and resistance to starvation. We find that flies housed at higher densities show greater mortality after being infected with bacterial pathogens, while also exhibiting increased resistance to starvation. Our results are more in line with the crowding stress hypothesis that postulates a compromised immune system when hosts are subjected to high densities.
Collapse
Affiliation(s)
- Paresh Nath Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Aabeer Kumar Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India.
| |
Collapse
|
5
|
Chen M, Sokolowski MB. How Social Experience and Environment Impacts Behavioural Plasticity in Drosophila. Fly (Austin) 2021; 16:68-84. [PMID: 34852730 DOI: 10.1080/19336934.2021.1989248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
An organism's behaviour is influenced by its social environment. Experiences such as social isolation or crowding may have profound short or long-term effects on an individual's behaviour. The composition of the social environment also depends on the genetics and previous experiences of the individuals present, leading to additional potential outcomes from each social interaction. In this article, we review selected literature related to the social environment of the model organism Drosophila melanogaster, and how Drosophila respond to variation in their social experiences throughout their lifetimes. We focus on the effects of social environment on behavioural phenotypes such as courtship, aggression, and group dynamics, as well as other phenotypes such as development and physiology. The consequences of phenotypic plasticity due to social environment are discussed with respect to the ecology and evolution of Drosophila. We also relate these studies to laboratory research practices involving Drosophila and other animals.
Collapse
Affiliation(s)
- Molly Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Current Affiliation: Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
6
|
Walsh JT, Garnier S, Linksvayer TA. Ant Collective Behavior Is Heritable and Shaped by Selection. Am Nat 2020; 196:541-554. [PMID: 33064586 DOI: 10.1086/710709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.
Collapse
|