1
|
Anka IZ, Uren Webster TM, Berbel-Filho WM, Hitchings M, Overland B, Weller S, Garcia de Leaniz C, Consuegra S. Microbiome and epigenetic variation in wild fish with low genetic diversity. Nat Commun 2024; 15:4725. [PMID: 38830879 PMCID: PMC11148108 DOI: 10.1038/s41467-024-49162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, particularly in wild populations. Here, we examine the skin microbiome composition of two closely-related mangrove killifish species with different mating systems (self-fertilising and outcrossing) under sympatric and allopatric conditions. This allows us to partition the influence of the genotype and the environment on their microbiome and (previously described) epigenetic profiles. We find the diversity and community composition of the skin microbiome are strongly shaped by the environment and, to a lesser extent, by species-specific influences. Heterozygosity and microbiome alpha diversity, but not epigenetic variation, are associated with the fluctuating asymmetry of traits related to performance (vision) and behaviour (aggression). Our study identifies that a proportion of the epigenetic diversity and microbiome differentiation is unrelated to genetic variation, and we find evidence for an associative relationship between microbiome and epigenetic diversity in these wild populations. This suggests that both mechanisms could potentially contribute to variation in species with low genetic diversity.
Collapse
Affiliation(s)
- Ishrat Z Anka
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Tamsyn M Uren Webster
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Matthew Hitchings
- Institute of Life Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Benjamin Overland
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Sarah Weller
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Carlos Garcia de Leaniz
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Marine Research Centre (CIM-UVIGO), Universidade de Vigo, Vigo, Spain
| | - Sofia Consuegra
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK.
- Grupo de Biotecnología Acuática, Departamento de Biotecnología y Acuicultura, Instituto de Investigacións Mariñas, IIM-CSIC, Vigo, Spain.
| |
Collapse
|
2
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Berbel-Filho WM, Pacheco G, Lira MG, Garcia de Leaniz C, Lima SMQ, Rodríguez-López CM, Zhou J, Consuegra S. Additive and non-additive epigenetic signatures of natural hybridisation between fish species with different mating systems. Epigenetics 2022; 17:2356-2365. [PMID: 36082413 PMCID: PMC9665120 DOI: 10.1080/15592294.2022.2123014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hybridization is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between genetic background and methylation patterns in natural hybrids of two genetically divergent fish species with different mating systems, Kryptolebias hermaphroditus (self-fertilizing) and K. ocellatus (outcrossing). Co-existing parental species displayed highly distinct genetic (SNPs) and methylation patterns (37,000 differentially methylated cytosines). Hybrids had predominantly intermediate methylation patterns (88.5% of the sites) suggesting additive effects, as expected from hybridization between genetically distant species. The large number of differentially methylated cytosines between hybrids and parental species (n = 5,800) suggests that hybridization may play a role in increasing genetic and epigenetic variation. Although most of the observed epigenetic variation was additive and had a strong genetic component, we also found a small percentage of non-additive, potentially stochastic, methylation differences that might act as an evolutionary bet-hedging strategy and increase fitness under environmental instability.
Collapse
Affiliation(s)
- Waldir M Berbel-Filho
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - George Pacheco
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Mateus G Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Carlos Garcia de Leaniz
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Carlos M Rodríguez-López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Jia Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sofia Consuegra
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
5
|
Berbel-Filho WM, Pacheco G, Tatarenkov A, Lira MG, Garcia de Leaniz C, Rodríguez López CM, Lima SMQ, Consuegra S. Phylogenomics reveals extensive introgression and a case of mito-nuclear discordance in the killifish genus Kryptolebias. Mol Phylogenet Evol 2022; 177:107617. [PMID: 36038055 DOI: 10.1016/j.ympev.2022.107617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Introgression is a widespread evolutionary process leading to phylogenetic inconsistencies among distinct parts of the genomes, particularly between mitochondrial and nuclear-based phylogenetic reconstructions (e.g., mito-nuclear discordances). Here, we used mtDNA and genome-wide nuclear sites to provide the first phylogenomic-based hypothesis on the evolutionary relationships within the killifish genus Kryptolebias. In addition, we tested for evidence of past introgression in the genus given the multiple reports of undergoing hybridization between its members. Our mtDNA phylogeny generally agreed with the relationships previously proposed for the genus. However, our reconstruction based on nuclear DNA revealed an unknown lineage - Kryptolebias sp. 'ESP' - as the sister group of the self-fertilizing mangrove killifishes, K. marmoratus and K. hermaphroditus. All individuals sequenced of Kryptolebias sp. 'ESP' had the same mtDNA haplotype commonly observed in K. hermaphroditus, demonstrating a clear case of mito-nuclear discordance. Our analysis further confirmed extensive history of introgression between Kryptolebias sp. 'ESP' and K. hermaphroditus. Population genomics analyses indicate no current gene flow between the two lineages, despite their current sympatry and history of introgression. We also confirmed introgression between other species pairs in the genus that have been recently reported to form hybrid zones. Overall, our study provides a phylogenomic reconstruction covering most of the Kryptolebias species, reveals a new lineage hidden in a case of mito-nuclear discordance, and provides evidence of multiple events of ancestral introgression in the genus. These findings underscore the importance of investigating different genomic information in a phylogenetic framework, particularly in taxa where introgression is common as in the sexually diverse mangrove killifishes.
Collapse
Affiliation(s)
- Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, USA(1); Department of Biosciences, College of Science, Swansea University, Swansea, UK.
| | - George Pacheco
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Mateus G Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | | | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Against the Odds: Hybrid Zones between Mangrove Killifish Species with Different Mating Systems. Genes (Basel) 2021; 12:genes12101486. [PMID: 34680881 PMCID: PMC8535463 DOI: 10.3390/genes12101486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.
Collapse
|
7
|
Lira MGS, Berbel-Filho WM, Espírito-Santo HMV, Tatarenkov A, Avise JC, de Leaniz CG, Consuegra S, Lima SMQ. Filling the gaps: phylogeography of the self-fertilizing Kryptolebias species (Cyprinodontiformes: Rivulidae) along South American mangroves. JOURNAL OF FISH BIOLOGY 2021; 99:644-655. [PMID: 33846974 DOI: 10.1111/jfb.14753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Mangrove killifishes of the genus Kryptolebias have been historically classified as rare because of their small size and cryptic nature. Major gaps in distribution knowledge across mangrove areas, particularly in South America, challenge the understanding of the taxonomic status, biogeographical patterns and genetic structuring of the lineages composing the self-fertilizing "Kryptolebias marmoratus species complex." In this study, the authors combined a literature survey, fieldwork and molecular data to fill major gaps of information about the distribution of mangrove killifishes across western Atlantic mangroves. They found that selfing mangrove killifishes are ubiquitously distributed across the Caribbean, Central and South American mangroves and report 14 new locations in South America, extending the range of both the "Central clade" and "Southern clade" lineages which overlap in the Amazon. Although substantial genetic differences were found between clades, the authors also found further genetic structuring within clades, with populations in Central America, north and northeast Brazil generally showing higher levels of genetic diversity compared to the clonal ones in southeast Brazil. The authors discuss the taxonomic status and update the geographical distribution of the Central and Southern clades, as well as potential dispersal routes and biogeographical barriers influencing the distribution of the selfing mangrove killifishes in the western Atlantic mangroves.
Collapse
Affiliation(s)
- Mateus G S Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Programa de Pós-Graduação em Sistemática e Evolução, Natal, Brazil
| | | | | | - Andrei Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Programa de Pós-Graduação em Sistemática e Evolução, Natal, Brazil
| |
Collapse
|
8
|
Voisin AS, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F. Genome-wide DNA methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics 2021; 17:473-497. [PMID: 33892617 DOI: 10.1080/15592294.2021.1921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Victoria Suarez Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Peter Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
9
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2020; 16:1335-1346. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has sorted several efforts to its control, generating enormous economic losses. Epigenetic alterations, such as DNA methylation, can play a relevant role in the modulation of the metazoans response to pathogens. Bacterial disease may activate global and local immune responses generating intricate responses with significant biological impact in the host. However, it is scarcely understood how bacterial infections influence fish epigenetic alterations. In the present study, we utilized Pacific salmon and Piscirickettsiosis as model, to gain understanding into the dynamics of DNA methylation among fish-bacterial infection interactions. A genome-wide analysis of DNA methylation patterns in female spleen tissue of Pacific salmon was achieved by reduced representation bisulphite sequencing from a time course design. We determined 2,251, 1,918, and 2,516 differentially methylated regions DMRs among infected and control Pacific salmon in 1 dpi, 5 dpi, and 15 dpi, respectively. The mean methylation difference per DMR among control and infected groups was of ~35%, with an oscillatory pattern of hypo, hyper, and hypomethylation across the disease. DMCs, among the control and infected group, showed that they were statistically enriched in intergenic regions and depleted in exons. Functional annotation of the DMR genes demonstrated three KEGG principal categories, associated directly with the host response to pathogens infections. Our results provide the first evidence of epigenetic variation in fish provoked by bacterial infection and demonstrate that this variation can be modulated across the disease.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Nicolás Bascuñan
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
11
|
More than meets the eye: syntopic and morphologically similar mangrove killifish species show different mating systems and patterns of genetic structure along the Brazilian coast. Heredity (Edinb) 2020; 125:340-352. [PMID: 32826964 DOI: 10.1038/s41437-020-00356-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/22/2023] Open
Abstract
Different mating systems can strongly affect the extent of genetic diversity and population structure among species. Given the increased effects of genetic drift on reduced population size, theory predicts that species undergoing self-fertilisation should have greater population structure than outcrossed species; however, demographic dynamics may affect this scenario. The mangrove killifish clade is composed of the two only known examples of self-fertilising species among vertebrates (Kryptolebias marmoratus and Kryptolebias hermaphroditus). A third species in this clade, Kryptolebias ocellatus, inhabits mangrove forests in southeast Brazil; however, its mating system and patterns of genetic structure have been rarely explored. Here, we examined the genetic structure and phylogeographic patterns of K. ocellatus along its distribution, using mitochondrial DNA and microsatellites to compare its patterns of genetic structure with the predominantly selfing and often-syntopic, K. hermaphroditus. Our results indicate that K. ocellatus reproduces mainly by outcrossing, with no current evidence of selfing, despite being an androdioecious species. Our results also reveal a stronger population subdivision in K. ocellatus compared to K. hermaphroditus, contrary to the theoretical predictions based on reproductive biology of the two species. Our findings indicate that, although morphologically similar, K. ocellatus and K. hermaphroditus had remarkably different evolutionary histories when colonising the same mangrove areas in southeastern Brazil, with other factors (e.g., time of colonisation, dispersal/establishment capacity) having more profound effects on the current population structuring of those species than differences in mating systems.
Collapse
|
12
|
Biwer C, Kawam B, Chapelle V, Silvestre F. The Role of Stochasticity in the Origin of Epigenetic Variation in Animal Populations. Integr Comp Biol 2020; 60:1544-1557. [PMID: 32470118 DOI: 10.1093/icb/icaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals, and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental, or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless present in natural populations and stochastic epigenetic variation, also referred to spontaneous epimutations, can sustain phenotypic diversity. Here, potential sources of such stochastic epigenetic variability in animals are explored, with a focus on DNA methylation. To this day, quantifying the importance of stochasticity in epigenetic variability remains a challenge. However, comparisons between the mutation and the epimutation rates showed a high level of the latter, suggesting a significant role of spontaneous epimutations in adaptation. The implications of stochastic epigenetic variability are multifold: by affecting development and subsequently phenotype, random changes in epigenetic marks may provide additional phenotypic diversity, which can help natural populations when facing fluctuating environments. In isogenic lineages and asexually reproducing organisms, poor or absent genetic diversity can hence be tolerated. Further implication of stochastic epigenetic variability in adaptation is found in bottlenecked invasive species populations and populations using a bet-hedging strategy.
Collapse
Affiliation(s)
| | | | | | - F Silvestre
- Institute of Earth, Life and Environment (ILEE), University of Namur, 61 rue de Bruxelles, Namur, 5000, Belgium
| |
Collapse
|