1
|
Goodheart B, Creel S, Schuette P, Droge E, Becker J, Banda K, Kusler A, Matsushima S, Banda K, Kabwe R, Donald W, Reyes de Merkle J, Kaluka A, Chifunte C, Becker M. Spatial Risk Effects From Lions Compound Impacts of Prey Depletion on African Wild Dogs. Ecol Evol 2024; 14:e70401. [PMID: 39429801 PMCID: PMC11489504 DOI: 10.1002/ece3.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Prey depletion threatens many carnivore species across the world and can especially threaten low-density subordinate competitors, particularly if subordinates are limited to low densities by their dominant competitors. Understanding the mechanisms that drive responses of carnivore density to prey depletion is not only crucial for conservation but also elucidates the balance between top-down and bottom-up limitations within the large carnivore guild. To avoid predation, competitively subordinate African wild dogs typically avoid their dominant competitors (lions) and the prey rich areas they are associated with, but no prior research has tested whether this pattern persists in ecosystems with anthropogenically-reduced prey density, and reduced lion density as a result. We used spatial data from wild dogs and lions in the prey-depleted Greater Kafue Ecosystem to test if wild dogs continue to avoid lions (despite their low density), and consequently avoid habitats with higher densities of their dominant prey species. We found that although lion density is 3X lower than comparable ecosystems, wild dogs continue to strongly avoid lions, and consequently avoid habitats associated with their two most important prey species. Although the density of lions in the GKE is low due to prey depletion, their competitive effects on wild dogs remain strong. These effects are likely compounded by prey-base homogenization, as lions in the GKE now rely heavily on the same prey preferred by wild dogs. These results suggest that a reduction in lion density does not necessarily reduce competition, and helps explain why wild dogs decline in parallel with their dominant competitors in ecosystems suffering from anthropogenic prey depletion. Protecting prey populations within the few remaining strongholds for wild dogs is vitally important to avoid substantial population declines. Globally, understanding the impacts of prey depletion on carnivore guild dynamics should be an increasingly important area of focus for conservation.
Collapse
Affiliation(s)
- Ben Goodheart
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | - Scott Creel
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | - Paul Schuette
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
- U.S. Fish and Wildlife ServiceMarine Mammals ManagementAnchorageAlaskaUSA
| | - Egil Droge
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati‐Kaplan CentreUniversity of OxfordTubneyUK
| | - Justine A. Becker
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | | | - Anna Kusler
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | | | - Kachama Banda
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | - Ruth Kabwe
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
- Musekese ConservationKafue National ParkLusaka ProvinceZambia
| | - Will Donald
- Musekese ConservationKafue National ParkLusaka ProvinceZambia
| | - Johnathan Reyes de Merkle
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| | - Adrian Kaluka
- Zambia Department of National Parks and WildlifeChungaCentral ProvinceZambia
| | - Clive Chifunte
- Zambia Department of National Parks and WildlifeChungaCentral ProvinceZambia
| | - Matthew S. Becker
- Department of EcologyMontana State UniversityBozemanMontanaUSA
- Zambian Carnivore ProgrammeMfuweEastern ProvinceZambia
| |
Collapse
|
2
|
Dejeante R, Loveridge AJ, Macdonald DW, Madhlamoto D, Valeix M, Chamaillé-Jammes S. Counter-strategies to infanticide: The importance of cubs in determining lion habitat selection and social interactions. J Anim Ecol 2024; 93:159-170. [PMID: 38174381 DOI: 10.1111/1365-2656.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Animal social and spatial behaviours are inextricably linked. Animal movements are driven by environmental factors and social interactions. Habitat structure and changing patterns of animal space use can also shape social interactions. Animals adjust their social and spatial behaviours to reduce the risk of offspring mortality. In territorial infanticidal species, two strategies are possible for males: they can stay close to offspring to protect them against rivals (infant-defence hypothesis) or patrol the territory more intensively to prevent rival intrusions (territorial-defence hypothesis). Here, we tested these hypotheses in African lions (Panthera leo) by investigating how males and females adjust their social and spatial behaviours in the presence of offspring. We combined datasets on the demography and movement of lions, collected between 2002 and 2016 in Hwange National Park (Zimbabwe), to document the presence of cubs (field observations) and the simultaneous movements of groupmates and competitors (GPS tracking). We showed a spatial response of lions to the presence of offspring, with females with cubs less likely to select areas close to waterholes or in the periphery of the territory than females without cubs. In contrast, these areas were more selected by males when there were cubs in the pride. We also found social responses. Males spent more time with females as habitat openness increased but the presence of cubs in the pride did not influence the average likelihood of observing males with females. Furthermore, rival males relocated further after an encounter with pride males when cubs were present in the prides, suggesting that the presence of cubs leads to a more vigorous repulsion of competitors. Males with cubs in their pride were more likely to interact with male competitors on the edge of the pride's home range and far from the waterholes, suggesting that they are particularly assiduous in detecting and repelling rival males during these periods. In general, the strategies to avoid infanticide exhibited by male lions supported the territorial-defence hypothesis. Our study contributes to answer the recent call for a behavioural ecology at the spatial-social interface.
Collapse
Affiliation(s)
- Romain Dejeante
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Andrew J Loveridge
- Wildlife Conservation Research Unit, Department of Biology, The Recanati-Kaplan Centre, University of Oxford, Oxford, UK
- Panthera, New York, New York, USA
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Biology, The Recanati-Kaplan Centre, University of Oxford, Oxford, UK
| | - Daphine Madhlamoto
- Zimbabwe Parks and Wildlife Management Authority, Main Camp Research, Chiredzi, Zimbabwe
| | - Marion Valeix
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
- LTSER France, Zone Atelier 'Hwange', Hwange National Park, Zimbabwe
| | - Simon Chamaillé-Jammes
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LTSER France, Zone Atelier 'Hwange', Hwange National Park, Zimbabwe
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Nams VO, Parker DM, Weise FJ, Patterson BD, Buij R, Radloff FGT, Vanak AT, Tumenta PN, Hayward MW, Swanepoel LH, Funston PJ, Bauer H, Power RJ, O'Brien J, O'Brien TG, Tambling CJ, de Iongh HH, Ferreira SM, Owen‐Smith N, Cain JW, Fattebert J, Croes BM, Spong G, Loveridge AJ, Houser AM, Golabek KA, Begg CM, Grant T, Trethowan P, Musyoki C, Menges V, Creel S, Balme GA, Pitman RT, Bissett C, Jenny D, Schuette P, Wilmers CC, Hunter LTB, Kinnaird MF, Begg KS, Owen CR, Steyn V, Bockmuehl D, Munro SJ, Mann GKH, du Preez BD, Marker LL, Huqa TJ, Cozzi G, Frank LG, Nyoni P, Stein AB, Kasiki SM, Macdonald DW, Martins QE, van Vuuren RJ, Stratford KJ, Bidner LR, Oriol‐Cotteril A, Maputla NW, Maruping‐Mzileni N, Parker T, van't Zelfde M, Isbell LA, Beukes OB, Beukes M. Spatial patterns of large African cats: a large‐scale study on density, home range size, and home range overlap of lions
Panthera leo
and leopards
Panthera pardus. Mamm Rev 2023. [DOI: 10.1111/mam.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Vilis O. Nams
- Department of Plant, Food and Environmental Scienes, Faculty of Agriculture Dalhousie University Truro NS B2N 5E3 Canada
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
| | - Dan M. Parker
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
- School of Biology and Environmental Sciences University of Mpumalanga Nelspruit 1200 South Africa
| | - Florian J. Weise
- Centre for Wildlife Management University of Pretoria Pretoria 0002 South Africa
- CLAWS Conservancy, Pride in Our Prides Worcester MA 01608 USA
- N/a'an ku sê Research Programme P.O. Box 99292 Windhoek Namibia
| | - Bruce D. Patterson
- Negaunee Integrative Research Center Field Museum of Natural History Chicago IL 60605 USA
| | - Ralph Buij
- Animal Ecology Group Wageningen University & Research Droevendaalsesteeg 3A 6708 PB Wageningen The Netherlands
- The Peregrine Fund 5668 West Flying Hawk Lane Boise ID 83709 USA
| | - Frans G. T. Radloff
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences Cape Peninsula University of Technology P.O. Box 652 Cape Town 8000 South Africa
| | - Abi Tamim Vanak
- Ashoka Trust for Research in Ecology and the Environment Bangalore 560064 India
- School of Life Sciences University of KwaZulu‐Natal Durban 3629 South Africa
| | - Pricelia N. Tumenta
- Department of Forestry, Faculty of Agronomy and Agricultural Sciences University of Dschang P.O. Box 138 Yaounde Cameroon
- Regional Training Centre Specialized in Agriculture, Forestry‐wood and Environment (CRESA Foret Bois) University of Dschang P.O. Box 138 Yaounde Cameroon
| | - Matt W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, College of Engineering, Science and the Environment University of Newcastle Callaghan NSW 2308 Australia
- Department of Zoology and Entomology, Mammal Research Institute University of Pretoria Pretoria 0002 South Africa
| | | | - Paul J. Funston
- Department of Nature Conservation Tshwane University of Technology Private Bag X680 Pretoria 0001 South Africa
- Panthera New York NY 10018 USA
| | - Hans Bauer
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
| | - R. John Power
- Department of Economic Development, Environment, Conservation and Tourism North West Provincial Government Mahikeng 2735 South Africa
| | - John O'Brien
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
| | - Timothy G. O'Brien
- Wildlife Conservation Society, Global Conservation Programs 2300 Southern Blvd. Bronx NY 10460 USA
| | - Craig J. Tambling
- Department of Zoology and Entomology University of Fort Hare Alice Eastern Cape 5700 South Africa
- Department of Zoology and Entomology University of Pretoria Pretoria 0028 South Africa
| | - Hans H. de Iongh
- Evolutionary Ecology Group, Department Biology University of Antwerp Universiteitsplein 1, Wilrijk, Building D 132 Antwerpen Belgium
- Institute of Environmental Sciences Leiden University Einsteinweg 2, P.O. Box 9518 2300 RA Leiden The Netherlands
| | - Sam M. Ferreira
- Scientific Services, SANParks Private Bag x 402 Skukuza 1350 South Africa
| | - Norman Owen‐Smith
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Private Bag 3 Wits 2050 South Africa
| | - James W. Cain
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Private Bag 3 Wits 2050 South Africa
| | - Julien Fattebert
- Panthera New York NY 10018 USA
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu‐Natal Durban 4000 South Africa
| | - Barbara M. Croes
- Institute of Environmental Sciences Leiden University Einsteinweg 2, P.O. Box 9518 2300 RA Leiden The Netherlands
| | - Goran Spong
- Forestry and Environmental Resources College of Natural Resources, NCSU Raleigh 27695 USA
- Molecular Ecology Group Wildlife, Fish, & Environmental Studies, SLU 90183 Umeå Sweden
| | - Andrew J. Loveridge
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
| | - Ann Marie Houser
- Cheetah Conservation Botswana Private Bag 0457 Gaborone Botswana
| | | | - Colleen M. Begg
- Niassa Carnivore Project Private Bag X18 Rondebosch South Africa
| | - Tanith Grant
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
| | - Paul Trethowan
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
| | | | - Vera Menges
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17 D‐10315 Berlin Germany
| | - Scott Creel
- Department of Ecology Montana State University Bozeman MT 59717 USA
| | - Guy A. Balme
- Panthera New York NY 10018 USA
- Institute for Communities and Wildlife in Africa University of Cape Town Private Bag X3 Rondebosch 7701 South Africa
| | - Ross T. Pitman
- Panthera New York NY 10018 USA
- Institute for Communities and Wildlife in Africa University of Cape Town Private Bag X3 Rondebosch 7701 South Africa
| | - Charlene Bissett
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
- Scientific Services, SANParks Private Bag x 402 Skukuza 1350 South Africa
| | - David Jenny
- Centre Suisse de Recherches Scientifiques 17 Rte de Dabou, Abidjan Ivory Coast
- Zoologisches Institut Universität Bern Baltzerstrasse 6 Bern 3012 Switzerland
| | - Paul Schuette
- Department of Ecology Montana State University Bozeman MT 59717 USA
| | | | - Luke T. B. Hunter
- Wildlife Conservation Society, Global Conservation Programs 2300 Southern Blvd. Bronx NY 10460 USA
- School of Biological and Conservation Sciences University of KwaZulu‐Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa
| | | | - Keith S. Begg
- Niassa Carnivore Project Private Bag X18 Rondebosch South Africa
| | - Cailey R. Owen
- School of Life Sciences University of KwaZulu‐Natal Durban 3629 South Africa
| | - Villiers Steyn
- Department of Nature Conservation Tshwane University of Technology Private Bag X680 Pretoria 0001 South Africa
| | - Dirk Bockmuehl
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17 D‐10315 Berlin Germany
| | - Stuart J. Munro
- N/a'an ku sê Research Programme P.O. Box 99292 Windhoek Namibia
| | - Gareth K. H. Mann
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
- Panthera New York NY 10018 USA
- Department of Biological Sciences University of Cape Town Cape Town 7701 South Africa
- The Cape Leopard Trust Cape Town 7806 South Africa
| | - Byron D. du Preez
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
| | | | - Tuqa J. Huqa
- Kenya Wildlife Service P.O. Box 40241 00100 Nairobi Kenya
| | - Gabriele Cozzi
- Botswana Predator Conservation Trust Private Bag 13 Maun Botswana
- Department of Evolutionary Biology and Environmental Studies Zurich University Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Laurence G. Frank
- Living with Lions, Mpala Research Centre P.O. Box 555 Nanyuki 10400 Kenya
- Museum of Vertebrate Zoology University of California Berkeley CA 94720 USA
| | - Phumuzile Nyoni
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
- Debshan Ranch PO Box 24 Shagani Zimbabwe
| | - Andrew B. Stein
- CLAWS Conservancy, Pride in Our Prides Worcester MA 01608 USA
- Department of Environmental Conservation University of Massachusetts Amherst MA 01003 USA
- Landmark College Putney VT 05346 USA
| | | | - David W. Macdonald
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
| | - Quinton E. Martins
- The Cape Leopard Trust Cape Town 7806 South Africa
- True Wild LLC Glen Ellen CA USA
| | | | - Ken J. Stratford
- Ongava Research Centre 102A Nelson Mandela Avenue Windhoek Namibia
| | | | - Alayne Oriol‐Cotteril
- Wildlife Conservation Research Unit, Zoology Department University of Oxford, The Recanati‐Kaplan Centre Tubney House, Abingdon Road, Tubney Abingdon OX13 5QL UK
- Living With Lions, Museum of Vertebrate Zoology, University of California Berkeley CA 94720 USA
| | - Nakedi W. Maputla
- Department of Zoology and Entomology, Mammal Research Institute University of Pretoria Pretoria 0002 South Africa
| | - Nkabeng Maruping‐Mzileni
- Department of Zoology and Entomology, Mammal Research Institute University of Pretoria Pretoria 0002 South Africa
| | - Tim Parker
- Wildlife and Reserve Management Research Group, Department of Zoology & Entomology Rhodes University P.O. Box 94 Grahamstown 6140 South Africa
| | - Maarten van't Zelfde
- Evolutionary Ecology Group, Department Biology University of Antwerp Universiteitsplein 1, Wilrijk, Building D 132 Antwerpen Belgium
| | - Lynne A. Isbell
- Mpala Research Centre P.O. Box 555 Nanyuki 10400 Kenya
- Department of Anthropology University of California Davis CA 95616 USA
| | - Otto B. Beukes
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences Cape Peninsula University of Technology P.O. Box 652 Cape Town 8000 South Africa
| | - Maya Beukes
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences Cape Peninsula University of Technology P.O. Box 652 Cape Town 8000 South Africa
| |
Collapse
|
4
|
Patch choice decisions by a fission–fusion forager as a test of the ecological constraints model. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Chapman et al.’s (Behav Ecol Sociobiol 36:59–70, 1995) ecological constraints model posits that the size and distribution of food patches place restrictions upon foraging group size. Larger groups incur increased travel costs for any given array of patches, and thus, to fulfil individual energetic and nutritional requirements, foragers should adjust group sizes to balance energy obtained against that spent on travelling. Support for this model comes from both comparative and species-specific studies but findings are contradictory, and the utility of the model has been questioned. This study provides a rigorous test, analysing measurements from distinct food patches and individual inter-patch movements, on an appropriately shorter temporal scale. Using data drawn from two social groups of a species characterised by a high degree of fission–fusion dynamics, the chimpanzee (Pan troglodytes), we show that larger parties foraged in larger food patches and for longer durations, and that larger parties were associated with further travel between patches. Overt contest competition over food increased with party size. We found no evidence of distinct sex differences in either party size or travel distances: the predictive power of forager sex was low compared to that of ecological variables. We propose that analysis at the patch level is more appropriate than a daily averaging approach that may smooth out the very variation being investigated. Our findings suggest that, despite certain limitations, Chapman et al.’s (Behav Ecol Sociobiol 36:59–70, 1995) model of ecological constraints remains a useful tool. Ecology does indeed constrain grouping patterns, and the impact of this is not necessarily differentiated by sex.
Significance statement
Foraging animals face the ‘more mouths to feed’ problem: as the numbers in a group increase, the group must travel further to find enough food, using up energy. Hence, foragers should adjust numbers to minimise these costs, but tests of this idea have proved inconclusive. We investigated the foraging behaviour of chimpanzees, a species with highly flexible grouping, considering their travel between specific patches of food. We found clear support for this proposition, with larger patches of food hosting larger numbers of foragers, and such groups having to travel further to find food. Although it is often thought that female animals should respond more strongly to foraging costs, we found little evidence of sex differences. Our results show that ecology does indeed constrain grouping patterns, and that the impact is felt equally by males and females.
Collapse
|
5
|
Vinks MA, Creel S, Schuette P, Becker MS, Rosenblatt E, Sanguinetti C, Banda K, Goodheart B, Young-Overton K, Stevens X, Chifunte C, Midlane N, Simukonda C. Response of lion demography and dynamics to the loss of preferred larger prey. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02298. [PMID: 33434324 DOI: 10.1002/eap.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Large carnivores are experiencing range contraction and population declines globally. Prey depletion due to illegal offtake is considered a major contributor, but the effects of prey depletion on large carnivore demography are rarely tested. We measured African lion density and tested the factors that affect survival using mark-recapture models fit to six years of data from known individuals in Kafue National Park (KNP), Zambia. KNP is affected by prey depletion, particularly for large herbivores that were preferred prey for KNP lions a half-century ago. This provides a unique opportunity to test whether variables that explain local prey density also affect lion survival. Average lion density within our study area was 3.43 individuals/100 km2 (95% CI, 2.79-4.23), which was much lower than lion density reported for another miombo ecosystem with similar vegetation structure and rainfall that was less affected by prey depletion. Despite this, comparison to other lion populations showed that age- and sex-specific survival rates for KNP lions were generally good, and factors known to correlate with local prey density had small effects on lion survival. In contrast, recruitment of cubs was poor and average pride size was small. In particular, the proportion of the population comprised of second-year cubs was low, indicating that few cubs are recruited into the subadult age class. Our findings suggest that low recruitment might be a better signal of low prey density than survival. Thus, describing a lion population's age structure in addition to average pride size may be a simple and effective method of initially evaluating whether a lion population is affected by prey depletion. These dynamics should be evaluated for other lion populations and other large carnivore species. Increased resource protection and reducing the underlying drivers of prey depletion are urgent conservation needs for lions and other large carnivores as their conservation is increasingly threatened by range contraction and population declines.
Collapse
Affiliation(s)
- Milan A Vinks
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Scott Creel
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
- Institut för Vilt, Fisk Och Miljö, Sveriges Lantbruksuniversitet, Umeå, Sweden
| | - Paul Schuette
- Marine Mammals Management, U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska, 99503, USA
| | - Matthew S Becker
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, Aiken Center, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | | - Ben Goodheart
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Kim Young-Overton
- Panthera, 8 West 40 Street, Floor 18, New York, New York, 10018, USA
| | - Xia Stevens
- Panthera, 8 West 40 Street, Floor 18, New York, New York, 10018, USA
| | - Clive Chifunte
- Institut för Vilt, Fisk Och Miljö, Sveriges Lantbruksuniversitet, Umeå, Sweden
- Zambia Department of National Parks and Wildlife, Chilanga, Zambia
| | - Neil Midlane
- Wilderness Safaris, Block H, The Terraces, Steenberg Office Park, 1 Silverwood Close, Tokai, Cape Town, South Africa
| | - Chuma Simukonda
- Zambia Department of National Parks and Wildlife, Chilanga, Zambia
| |
Collapse
|
6
|
Lee SM, Hohmann G, Lonsdorf EV, Fruth B, Murray CM. Gregariousness, foraging effort, and affiliative interactions in lactating bonobos and chimpanzees. Behav Ecol 2021; 32:188-198. [PMID: 33716569 DOI: 10.1093/beheco/araa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Fission-fusion dynamics have evolved in a broad range of animal taxa and are thought to allow individuals to mitigate feeding competition. While this is the principal benefit of fission-fusion, few studies have evaluated its costs. We compared gregariousness, foraging budgets, and social budgets between lactating bonobos and chimpanzees from wild populations to evaluate potential costs. Both species exhibit fission-fusion dynamics, but chimpanzees, particularly in East African populations, appear to experience higher feeding competition than bonobos. We expected lactating chimpanzees to be less gregarious than lactating bonobos; reduced gregariousness should allow lactating chimpanzees to mitigate the costs of higher feeding competition without requiring more foraging effort. However, we expected the reduced gregariousness of lactating chimpanzees to limit their time available for affiliative interactions. Using long-term data from LuiKotale bonobos and Gombe chimpanzees, we found that lactating chimpanzees were indeed less gregarious than lactating bonobos, while feeding and travel time did not differ between species. Contrary to our predictions, lactating females did not differ in social interaction time, and lactating chimpanzees spent proportionately more time interacting with individuals other than their immature offspring. Our results indicate that lactating chimpanzees can maintain social budgets comparable to lactating bonobos despite reduced gregariousness and without incurring additional foraging costs. We discuss potential explanations for why lactating bonobos are more gregarious.
Collapse
Affiliation(s)
- Sean M Lee
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | | | - Barbara Fruth
- Faculty of Science, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein, Antwerp, Belgium
| | - Carson M Murray
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
|
8
|
Beukes M, Radloff FG, Ferreira SM. Spatial and Seasonal Variation in Lion (Panthera leo) Diet in the Southwestern Kgalagadi Transfrontier Park. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2020. [DOI: 10.3957/056.050.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Maya Beukes
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000 South Africa
| | - Frans G.T. Radloff
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000 South Africa
| | - Sam M. Ferreira
- Scientific Services Department, South African National Parks, Skukuza, South Africa
| |
Collapse
|