1
|
Wiberg RAW, Viktorin G, Schärer L. Mating strategy predicts gene presence/absence patterns in a genus of simultaneously hermaphroditic flatworms. Evolution 2022; 76:3054-3066. [PMID: 36199200 PMCID: PMC10092323 DOI: 10.1111/evo.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023]
Abstract
Gene repertoire turnover is a characteristic of genome evolution. However, we lack well-replicated analyses of presence/absence patterns associated with different selection contexts. Here, we study ∼100 transcriptome assemblies across Macrostomum, a genus of simultaneously hermaphroditic flatworms exhibiting multiple convergent shifts in mating strategy and associated reproductive morphologies. Many species mate reciprocally, with partners donating and receiving sperm at the same time. Other species convergently evolved to mate by hypodermic injection of sperm into the partner. We find that for orthologous transcripts annotated as expressed in the body region containing the testes, sequences from hypodermically inseminating species diverge more rapidly from the model species, Macrostomum lignano, and have a lower probability of being observed in other species. For other annotation categories, simpler models with a constant rate of similarity decay with increasing genetic distance from M. lignano match the observed patterns well. Thus, faster rates of sequence evolution for hypodermically inseminating species in testis-region genes result in higher rates of homology detection failure, yielding a signal of rapid evolution in sequence presence/absence patterns. Our results highlight the utility of considering appropriate null models for unobserved genes, as well as associating patterns of gene presence/absence with replicated evolutionary events in a phylogenetic context.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland.,Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Gudrun Viktorin
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| | - Lukas Schärer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| |
Collapse
|
2
|
Singh P, Schärer L. Evolution of sex allocation plasticity in a hermaphroditic flatworm genus. J Evol Biol 2022; 35:817-830. [PMID: 35583959 PMCID: PMC9321609 DOI: 10.1111/jeb.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Sex allocation theory in simultaneous hermaphrodites predicts that optimal sex allocation is influenced by local sperm competition, which occurs when related sperm compete to fertilize a given set of eggs. Different factors, including the mating strategy and the ability to self‐fertilize, are predicted to affect local sperm competition and hence the optimal SA. Moreover, since the local sperm competition experienced by an individual can vary temporally and spatially, this can favour the evolution of sex allocation plasticity. Here, using seven species of the free‐living flatworm genus Macrostomum, we document interspecific variation in sex allocation, but neither their mating strategy nor their ability to self‐fertilize significantly predicted sex allocation among these species. Since we also found interspecific variation in sex allocation plasticity, we further estimated standardized effect sizes for plasticity in response to (i) the presence of mating partners (i.e. in isolation vs. with partners) and (ii) the strength of local sperm competition (i.e. in small vs. large groups). We found that self‐fertilization predicted sex allocation plasticity with respect to the presence of mating partners, with plasticity being lower for self‐fertilizing species. Finally, we showed that interspecific variation in sex allocation is higher than intraspecific variation due to sex allocation plasticity. Our study suggests that both sex allocation and sex allocation plasticity are evolutionarily labile, with self‐fertilization predicting the latter in Macrostomum.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Brand JN, Harmon LJ, Schärer L. Mating behavior and reproductive morphology predict macroevolution of sex allocation in hermaphroditic flatworms. BMC Biol 2022; 20:35. [PMID: 35130880 PMCID: PMC8822660 DOI: 10.1186/s12915-022-01234-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sex allocation is the distribution of resources to male or female reproduction. In hermaphrodites, this concerns an individual’s resource allocation to, for example, the production of male or female gametes. Macroevolutionary studies across hermaphroditic plants have revealed that the self-pollination rate and the pollination mode are strong predictors of sex allocation. Consequently, we expect similar factors such as the selfing rate and aspects of the reproductive biology, like the mating behaviour and the intensity of postcopulatory sexual selection, to predict sex allocation in hermaphroditic animals. However, comparative work on hermaphroditic animals is limited. Here, we study sex allocation in 120 species of the hermaphroditic free-living flatworm genus Macrostomum. We ask how hypodermic insemination, a convergently evolved mating behaviour where sperm are traumatically injected through the partner’s epidermis, affects the evolution of sex allocation. We also test the commonly-made assumption that investment into male and female reproduction should trade-off. Finally, we ask if morphological indicators of the intensity of postcopulatory sexual selection (female genital complexity, male copulatory organ length, and sperm length) can predict sex allocation. Results We find that the repeated evolution of hypodermic insemination predicts a more female-biased sex allocation (i.e., a relative shift towards female allocation). Moreover, transcriptome-based estimates of heterozygosity reveal reduced heterozygosity in hypodermically mating species, indicating that this mating behavior is linked to increased selfing or biparental inbreeding. Therefore, hypodermic insemination could represent a selfing syndrome. Furthermore, across the genus, allocation to male and female gametes is negatively related, and larger species have a more female-biased sex allocation. Finally, increased female genital complexity, longer sperm, and a longer male copulatory organ predict a more male-biased sex allocation. Conclusions Selfing syndromes have repeatedly originated in plants. Remarkably, this macroevolutionary pattern is replicated in Macrostomum flatworms and linked to repeated shifts in reproductive behavior. We also find a trade-off between male and female reproduction, a fundamental assumption of most theories of sex allocation. Beyond that, no theory predicts a more female-biased allocation in larger species, suggesting avenues for future work. Finally, morphological indicators of more intense postcopulatory sexual selection appear to predict more intense sperm competition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01234-1.
Collapse
Affiliation(s)
- Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Luke J Harmon
- Department of Biological Sciences, University of Idaho, Life Sciences South 252, 875 Perimeter Dr MS 3051, Moscow, ID, USA
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
4
|
Zadesenets KS, Rubtsov NB. B Chromosomes in Free-Living Flatworms of the Genus Macrostomum (Platyhelminthes, Macrostomorpha). Int J Mol Sci 2021; 22:13617. [PMID: 34948412 PMCID: PMC8708343 DOI: 10.3390/ijms222413617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
B chromosomes (Bs) or supernumerary chromosomes are extra chromosomes in the species karyotype that can vary in its copy number. Bs are widespread in eukaryotes. Usually, the Bs of specimens collected from natural populations are the object of the B chromosome studies. We applied another approach analyzing the Bs in animals maintained under the laboratory conditions as lines and cultures. In this study, three species of the Macrostomum genus that underwent a recent whole-genome duplication (WGD) were involved. In laboratory lines of M. lignano and M. janickei, the frequency of Bs was less than 1%, while in the laboratory culture of M. mirumnovem, it was nearer 30%. Their number in specimens of the culture varied from 1 to 14. Mosaicism on Bs was discovered in parts of these animals. We analyzed the distribution of Bs among the worms of the laboratory cultures during long-term cultivation, the transmission rates of Bs in the progeny obtained from crosses of worms with different numbers of Bs, and from self-fertilized isolated worms. The DNA content of the Bs in M. mirumnovem was analyzed with the chromosomal in situ suppression (CISS) hybridization of microdissected DNA probes derived from A chromosomes (As). Bs mainly consisted of repetitive DNA. The cytogenetic analysis also revealed the divergence and high variation in large metacentric chromosomes (LMs) containing numerous regions enriched for repeats. The possible mechanisms of the appearance and evolution of Bs and LMs in species of the Macrostomum genus were also discussed.
Collapse
Affiliation(s)
- Kira S. Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
5
|
Wiberg RAW, Brand JN, Schärer L. Faster Rates of Molecular Sequence Evolution in Reproduction-Related Genes and in Species with Hypodermic Sperm Morphologies. Mol Biol Evol 2021; 38:5685-5703. [PMID: 34534329 PMCID: PMC8662610 DOI: 10.1093/molbev/msab276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sexual selection drives the evolution of many striking behaviors and morphologies and should leave signatures of selection at loci underlying these phenotypes. However, although loci thought to be under sexual selection often evolve rapidly, few studies have contrasted rates of molecular sequence evolution at such loci across lineages with different sexual selection contexts. Furthermore, work has focused on separate sexed animals, neglecting alternative sexual systems. We investigate rates of molecular sequence evolution in hermaphroditic flatworms of the genus Macrostomum. Specifically, we compare species that exhibit contrasting sperm morphologies, strongly associated with multiple convergent shifts in the mating strategy, reflecting different sexual selection contexts. Species donating and receiving sperm in every mating have sperm with bristles, likely to prevent sperm removal. Meanwhile, species that hypodermically inject sperm lack bristles, potentially as an adaptation to the environment experienced by hypodermic sperm. Combining functional annotations from the model, Macrostomum lignano, with transcriptomes from 93 congeners, we find genus-wide faster sequence evolution in reproduction-related versus ubiquitously expressed genes, consistent with stronger sexual selection on the former. Additionally, species with hypodermic sperm morphologies had elevated molecular sequence evolution, regardless of a gene's functional annotation. These genome-wide patterns suggest reduced selection efficiency following shifts to hypodermic mating, possibly due to higher selfing rates in these species. Moreover, we find little evidence for convergent amino acid changes across species. Our work not only shows that reproduction-related genes evolve rapidly also in hermaphroditic animals, but also that well-replicated contrasts of different sexual selection contexts can reveal underappreciated genome-wide effects.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Zhang S, Shi Y, Zeng Z, Xin F, Deng L, Wang A. Two New Brackish-Water Species of Macrostomum (Platyhelminthes: Macrostomorpha) from China and Their Phylogenetic Positions. Zoolog Sci 2021; 38:273-286. [PMID: 34057353 DOI: 10.2108/zs200121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
In this paper, two new brackish-water species of the macrostomid turbellarian genus Macrostomum, Macrostomum pseudosinense sp. nov. and Macrostomum taurinum sp. nov., collected from coastal water at Shenzhen, Guangdong Province, China, are described based on morphological, histological, and molecular phylogenetic analyses. Macrostomum pseudosinense sp. nov. differs from similar species within the genus in the length of the stylet (152 ± 15.0 µm), diameter of stylet opening (20 ± 4.0 µm proximally; 7 ± 0.5 µm distally), two bends of the stylet, and the non-spiral end of the stylet. Macrostomum taurinum sp. nov. differs from its congeners in the length of the stylet (81 ± 7.4 µm), the stylet bending position and angle (50% and 60°), diameter of stylet proximal opening (15 ± 3.0 µm), sperm with bristles and brush, and the smooth-walled ovaries. Phylogenetic analyses inferred from nuclear 18S and 28S rRNA genes support the establishments of these two new species. In addition, reciprocal mating behavior of M. pseudosinense sp. nov. was observed and documented.
Collapse
Affiliation(s)
- Siyu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Yongshi Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Zicheng Zeng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Fan Xin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China,
| | - Antai Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China,
| |
Collapse
|
7
|
Singh P, Ballmer DN, Laubscher M, Schärer L. Successful mating and hybridisation in two closely related flatworm species despite significant differences in reproductive morphology and behaviour. Sci Rep 2020; 10:12830. [PMID: 32732887 PMCID: PMC7393371 DOI: 10.1038/s41598-020-69767-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Reproductive traits are some of the fastest diverging characters and can serve as reproductive barriers. The free-living flatworm Macrostomum lignano, and its congener M. janickei are closely related, but differ substantially in their male intromittent organ (stylet) morphology. Here, we examine whether these morphological differences are accompanied by differences in behavioural traits, and whether these could represent barriers to successful mating and hybridization between the two species. Our data shows that the two species differ in many aspects of their mating behaviour. Despite these differences, the species mate readily with each other in heterospecific pairings. Although both species have similar fecundity in conspecific pairings, the heterospecific pairings revealed clear postmating barriers, as few heterospecific pairings produced F1 hybrids. These hybrids had a stylet morphology that was intermediate between that of the parental species, and they were fertile. Finally, using a mate choice experiment, we show that the nearly two-fold higher mating rate of M. lignano caused it to mate more with conspecifics, leading to assortative mating, while M. janickei ended up mating more with heterospecifics. Thus, while the two species can hybridize, the mating rate differences could possibly lead to higher fitness costs for M. janickei compared to M. lignano.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Daniel N Ballmer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Max Laubscher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
8
|
Schärer L, Brand JN, Singh P, Zadesenets KS, Stelzer C, Viktorin G. A phylogenetically informed search for an alternative
Macrostomum
model species, with notes on taxonomy, mating behavior, karyology, and genome size. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology Zoological Institute University of Basel Basel Switzerland
| | - Jeremias N. Brand
- Evolutionary Biology Zoological Institute University of Basel Basel Switzerland
| | - Pragya Singh
- Evolutionary Biology Zoological Institute University of Basel Basel Switzerland
| | - Kira S. Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS Novosibirsk Russia
| | | | - Gudrun Viktorin
- Evolutionary Biology Zoological Institute University of Basel Basel Switzerland
| |
Collapse
|