1
|
Hao X, Ouyang W, Zhang K, Wan X, Cui X, Zhu W. Enhanced release, export, and transport of diffuse nutrients from litter in forested watersheds with climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155897. [PMID: 35569656 DOI: 10.1016/j.scitotenv.2022.155897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Variations in litter decomposition and nutrient migration are constraints to accurately estimate watershed diffuse forest pollution under the combined effects of topographic heterogeneity and climate change. In this study, remote sensing data, decomposition and leaching experiments, and the Soil and Water Assessment Tool (SWAT) were used to quantify the release, export, and transport characteristics of diffuse nutrients from forest litter under two climate scenarios (the current climate condition [S1] and the future warming and drying climate condition [S2]), and the impacts on aquatic environment were identified. The annual litter decomposition was 27.80 × 106 t in S2, which was 1.39 times that of S1. Additionally, the annual litter nutrient release in S2 (C, N, and P was 8.65 × 106, 3.31 × 105, and 1.57 × 104 t, respectively) also increased by 31.16%-45.62% compared with that of S1. The spatial patterns of nutrient export showed that the annual exports of C, N, and P in S1 were 109.77, 46.85, and 0.43 kg/ha, respectively. The annual nutrient export in S2 increased by 1.44 times, and S2 also had higher values of nutrient transport. In addition, variation trends of temperature and precipitation increased significantly with increasing altitude, which promoted differences in nutrient transport between S1 and S2 in the high-altitude areas. The response analysis of the diffuse nutrient in surface water also indicated that forest nutrient discharge load were critical factors affecting the aquatic environmental quality. This study indicated that climate warming accelerated litter decomposition and made litter a potential source of diffuse forest pollution, and watershed discharge load varied intensively with the terrestrial conditions. The combination of experiments and modeling can improve the accuracy of diffuse forest pollution simulation and provide valuable information for formulating watershed climate change adaptation strategies.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Kehao Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinyue Wan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xintong Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Weihong Zhu
- School of Geographic and Ocean Sciences, Key laboratory of Wetland Ecological Functions and Ecological Security, Yanbian University, Yanji, Jilin 133000, China
| |
Collapse
|
2
|
Ke M, Wang W, Zhou Q, Wang Y, Liu Y, Yu Y, Chen Y, Peng Z, Mo Q. Response of leaf functional traits to precipitation change: A case study from tropical woody tree. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Krashevska V, Stiegler C, June T, Widyastuti R, Knohl A, Scheu S, Potapov A. Land-use change shifts and magnifies seasonal variations of the decomposer system in lowland tropical landscapes. Ecol Evol 2022; 12:e9020. [PMID: 35784088 PMCID: PMC9205671 DOI: 10.1002/ece3.9020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter- and intraseasonal variations and frequency of extreme climatic events (i.e., droughts and floods), which have evident consequences for aboveground biodiversity. However, until today, there have been no studies on how land use affects seasonal variations below ground in tropical ecosystems, which may be more buffered against climatic variation. Here, we analyzed seasonal variations in soil parameters, basal respiration, microbial communities, and abundances of soil invertebrates along with microclimatic conditions in rainforest and monocultures of oil palm and rubber in Sumatra, Indonesia. About 75% (20 out of 26) of the measured litter and soil, microbial, and animal parameters varied with season, with seasonal changes in 50% of the parameters depending on land use. Land use affected seasonal variations in microbial indicators associated with carbon availability and cycling rate. The magnitude of seasonal variations in microbial parameters in the soil of monocultures was almost 40% higher than in the soil of rainforest. Measured parameters were associated with short-term climatic conditions (3-day period air humidity) in plantations, but not in rainforest, confirming a reduced soil buffering ability in plantations. Overall, our findings suggest that land use temporally shifts and increases the magnitude of seasonal variations of the belowground ecosystem compartment, with microbial communities responding most strongly. The increased seasonal variations in soil biota in plantations likely translate into more pronounced fluctuations in essential ecosystem functions such as nutrient cycling and carbon sequestration, and these ramifications ultimately may compromise the stability of tropical ecosystems in the long term. As the observed seasonal dynamics is likely to increase with both local and global climate change, these shifts need closer attention for the long-term sustainable management of plantation systems in the tropics.
Collapse
Affiliation(s)
- Valentyna Krashevska
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | | | - Tania June
- Department of Geophysics and MeteorologyBogor Agricultural University (IPB)BogorIndonesia
| | - Rahayu Widyastuti
- Department of Soil Sciences and Land ResourcesBogor Agricultural University (IPB)BogorIndonesia
| | - Alexander Knohl
- BioclimatologyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| | - Anton Potapov
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
4
|
Yu S, Sayer EJ, Li Z, Mo Q, Wang M, Li Y, Li Y, Xu G, Hu Z, Wang F. Delayed wet season increases soil net N mineralization in a seasonally dry tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153314. [PMID: 35124037 DOI: 10.1016/j.scitotenv.2022.153314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Seasonal precipitation regime plays a vital role in regulating nutrient dynamics in seasonally dry tropical forests. Present evidence suggests that not only wet season precipitation is increasing in the tropics of South China, but also that the wet season is occurring later. However, it is unclear how nutrient dynamics will respond to the projected precipitation regime changes. We assessed the impacts of altered seasonal precipitation on soil net N mineralization in a secondary tropical forest. Since 2013, by reducing throughfall and/or irrigating experimental plots, we delayed the wet season by two months from April-September to June-November (DW treatment) or increased annual precipitation by 25% in July and August (WW treatment). We measured soil net N mineralization rates and assessed soil microbial communities in January, April, August and November in 2015 and 2017. We found that a wetter wet season did not significantly affect soil microbes or net N mineralization rates, even in the mid-wet season (August) when soil water content in the WW treatment increased significantly. By contrast, a delayed wet season enhanced soil microbial biomass and altered microbial community structure, resulting in a two-fold increase in net N mineralization rates relative to controls in the early dry season (November). Structural equation modeling showed that the changes in net N mineralization during the early dry season were associated with altered soil microbial communities, dissolved organic N, and litterfall, which were all affected by enhanced soil water content. Our findings suggest that a delayed wet season could have a greater impact on N dynamics than increased precipitation during the wet season. Changes in the seasonal timing of rainfall might therefore influence the functioning of seasonally dry tropical forests.
Collapse
Affiliation(s)
- Shiqin Yu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, PR China; Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| | - Emma J Sayer
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; Smithsonian Tropical Research Institute, Balboa, Ancon, Panama City, Panama
| | - Zhian Li
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| | - Qifeng Mo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, PR China
| | - Mei Wang
- School of Geographic Sciences, South China Normal University, Guangzhou 510631, China
| | - Yingwen Li
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yongxing Li
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Guoliang Xu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, PR China
| | - Zhongmin Hu
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China.
| |
Collapse
|
5
|
Kong J, Lin Y, Huang F, Liu W, He Q, Su Y, Li J, Wang G, Qiu Q. Effects of Fertilization and Dry-Season Irrigation on Litterfall Dynamics and Decomposition Processes in Subtropical Eucalyptus Plantations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.919571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nutrient management in Eucalyptus plantations is critical for wood production and sustainable development. The biogeochemical mechanisms in Eucalyptus plantations are not fully understood due to changes in the spatiotemporal pattern of precipitation and plantation management. The nutrients released from litterfall are important sources of soil nutrition. We measured the seasonal production of various litterfall types and the proportions of their released nutrients in Eucalyptus urophylla × E. grandis plantations under compound fertilization, dry-season irrigation, and a combined compound fertilization and dry-season irrigation treatment. Our results showed that fertilization increased aboveground biomass and annual litterfall production (except leaf), and that the peak of litterfall production occurred in the rainy season. We found that the decomposition rates of leaf were significantly higher than that of twig, which were mainly controlled by stoichiometric characteristics, followed by soil enzyme activity (β-glucosidase, urease, and polyphenol oxidase). Fertilization decreased the carbon: nitrogen ratio and carbon: phosphorus ratio in litter, and increased soil enzyme activities, which accelerates litter decomposition and nutrient release. Dry-season irrigation increased litter decomposition and only affected the proportion of released potassium by changing the carbon: potassium ratio. Fertilization and dry-season irrigation accelerated the nutrient cycle to enhance compensatory growth. These results help to comprehend the effects of forest management on litterfall dynamics and decomposition processes in Eucalyptus plantations with seasonal drought.
Collapse
|
6
|
Zan P, Mao Z, Sun T. Effects of soil fauna on litter decomposition in Chinese forests: a meta-analysis. PeerJ 2022; 10:e12747. [PMID: 35047237 PMCID: PMC8757372 DOI: 10.7717/peerj.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Litter quality and climate have been presumed to be the dominant factors regulating litter decomposition rates on broad spatial scales. However, the role of soil fauna on litter decomposition is poorly understood, despite the fact that it could strongly influence decomposition by fragmentation and subsequent modification of the activities of microorganisms.In this study, we carried out a meta-analysis on the effects of soil fauna on litter decomposition rates in Chinese forests, ranging from boreal to tropical forests, based on data from 20 studies. The effects of climatic factors on decomposition rate were assessed by comparing the contribution of soil fauna to litter decomposition from studies carried out at different latitudes.The degree of influence of the soil fauna was in the order tropical (200%) > subtropical (47%) > temperate forest (28%). Comparing the effect size of soil fauna, it was found that when soil fauna was excluded, the decomposition rate, calculated using Olson's equation, was most affected in tropical forest (-0.77), while the litter decomposition rate both subtropical (-0.36) and temperate forest (-0.19) were also suppressed to varying degrees (P < 0.001). These results highlight that soil fauna could promote litter decomposition to different extents. Using stepwise multiple linear regression, the effect size of the soil fauna was negatively correlated with the cellulose and nitrogen concentrations of the initial litter material. In Chinese forests, litter decomposition rates were reduced, on average, by 65% when soil fauna was excluded. The impact of soil fauna on decomposition was shown to be closely related to climate and litter quality.
Collapse
Affiliation(s)
- Peng Zan
- Northeast Forestry University, Key Laboratory of Forest Plant Ecology, Ministry of Education, Harbin, China,Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Harbin, China
| | - Zijun Mao
- Northeast Forestry University, Key Laboratory of Forest Plant Ecology, Ministry of Education, Harbin, China,Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Harbin, China
| | - Tao Sun
- Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, Liaoning province, China
| |
Collapse
|
7
|
Soil Bacterial and Fungal Community Responses to Throughfall Reduction in a Eucalyptus Plantation in Southern China. FORESTS 2021. [DOI: 10.3390/f13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In subtropical plantations in southern China, how soil microbial communities respond to climate change-induced drought is poorly understood. A field experiment was conducted in a subtropical Eucalyptus plantation to determine the impacts of 50% of throughfall reduction (TR) on soil microbial community composition, function, and soil physicochemical properties. Results showed that TR reduced soil water content (SWC) and soil available phosphorus (AP) content. TR significantly altered 196 bacterial operational taxonomic units (OTUs), most of them belonging to Acidobacteria, Actinobacteria, and Proteobacteria, while there were fewer changes in fungal OTUs. At the phylum level, TR increased the relative abundance of Acidobacteria at 0–20 cm soil depth by 37.18%, but failed to influence the relative abundance of the fungal phylum. Notably, TR did not alter the alpha diversity of the bacterial and fungal communities. The redundancy analysis showed that the bacterial communities were significantly correlated with SWC, and fungal communities were significantly correlated with AP content. According to predictions of bacterial and fungal community functions using PICRUSt2 and FUNGuild platforms, TR had different effects on both bacterial and fungal communities. Overall, SWC and AP decreased during TR, resulting in greater changes in soil bacterial community structure, but did not dramatically change soil fungal community structure.
Collapse
|
8
|
Logan JR, Jacobson KM, Jacobson PJ, Evans SE. Fungal Communities on Standing Litter Are Structured by Moisture Type and Constrain Decomposition in a Hyper-Arid Grassland. Front Microbiol 2021; 12:596517. [PMID: 33716999 PMCID: PMC7943874 DOI: 10.3389/fmicb.2021.596517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Non-rainfall moisture (fog, dew, and water vapor; NRM) is an important driver of plant litter decomposition in grasslands, where it can contribute significantly to terrestrial carbon cycling. However, we still do not know whether microbial decomposers respond differently to NRM and rain, nor whether this response affects litter decomposition rates. To determine how local moisture regimes influence decomposer communities and their function, we examined fungal communities on standing grass litter at an NRM-dominated site and a rain-dominated site 75 km apart in the hyper-arid Namib Desert using a reciprocal transplant design. Dominant taxa at both sites consisted of both extremophilic and cosmopolitan species. Fungal communities differed between the two moisture regimes with environment having a considerably stronger effect on community composition than did stage of decomposition. Community composition was influenced by the availability of air-derived spores at each site and by specialization of fungi to their home environment; specifically, fungi from the cooler, moister NRM Site performed worse (measured as fungal biomass and litter mass loss) when moved to the warmer, drier rain-dominated site while Rain Site fungi performed equally well in both environments. Our results contribute to growing literature demonstrating that as climate change alters the frequency, magnitude and type of moisture events in arid ecosystems, litter decomposition rates may be altered and constrained by the composition of existing decomposer communities.
Collapse
Affiliation(s)
- J Robert Logan
- W.K. Kellogg Biological Station, Hickory Corners, MI, United States.,Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | | | - Peter J Jacobson
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Hickory Corners, MI, United States.,Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Eaton WD, McGee KM, Alderfer K, Jimenez AR, Hajibabaei M. Increase in abundance and decrease in richness of soil microbes following Hurricane Otto in three primary forest types in the Northern Zone of Costa Rica. PLoS One 2020; 15:e0231187. [PMID: 32730267 PMCID: PMC7392270 DOI: 10.1371/journal.pone.0231187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
Little is known of how hurricane-induced deposition of canopy material onto tropical forest floors influences the soil microbial communities involved in decomposition of these materials. In this study, to identify how soil bacterial and fungal communities might change after a hurricane, and their possible roles in the C and N cycles, soils were collected from five 2000 m2 permanent plots in Lowland, Upland and Riparian primary forests in Costa Rica 3 months before and 7 months after Hurricane Otto damaged the forests. The soil Water, inorganic N and Biomass C increased and total organic C decreased Post-Hurricane, all of which best predicted the changes in the Post-Hurricane soil microbial communities. Post-Hurricane soils from all forest types showed significant changes in community composition of total bacteria, total fungi, and five functional groups of microbes (i.e., degrading/lignin degrading, NH4+-producing, and ammonium oxidizing bacteria, and the complex C degrading/wood rot/lignin degrading and ectomycorrhizal fungi), along with a decrease in richness in genera of all groups. As well, the mean proportion of DNA sequences (MPS) of all five functional groups increased. There were also significant changes in the MPS values of 7 different fungal and 7 different bacterial genera that were part of these functional groups. This is the first evidence that hurricane-induced deposition of canopy material is stimulating changes in the soil microbial communities after the hurricane, involving changes in specific taxonomic and functional group genera, and reduction in the community richness while selecting for dominant genera possibly better suited to process the canopy material. These changes may represent examples of taxonomic switching of functionally redundant microbial genera in response to dramatic changes in resource input. It is possible that differences in these microbial communities and genera may serve as indicators of disturbed and recovering regional soil ecosystems, and should be evaluated in the future.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Pace University, New York, NY, United States of America
- * E-mail:
| | - Katie M. McGee
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| | - Kiley Alderfer
- Biology Department, Pace University, New York, NY, United States of America
| | | | - Mehrdad Hajibabaei
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| |
Collapse
|