1
|
Bronikowski AM, Hedrick AR, Kutz GA, Holden KG, Reinke B, Iverson JB. Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae). Immun Ageing 2023; 20:11. [PMID: 36894996 PMCID: PMC9997018 DOI: 10.1186/s12979-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in mammalian systems, but studies of immune function in long-lived, wild, non-mammalian populations are scarce. In this study we leverage a 38-year mark-recapture study to quantify the relationships among age, sex, survival, reproductive output and the innate immune system in a long-lived reptile, yellow mud turtles (Kinosternon flavescens; Testudines; Kinosternidae). METHODS We estimated rates of survival and age-specific mortality by sex based on mark-recapture data for 1530 adult females and 860 adult males over 38 years of captures. We analyzed bactericidal competence (BC), and two immune responses to foreign red blood cells - natural antibody-mediated haemagglutination (NAbs), and complement-mediated haemolysis ability (Lys) - in 200 adults (102 females; 98 males) that ranged from 7 to 58 years of age captured in May 2018 during their emergence from brumation, and for which reproductive output and long-term mark-recapture data were available. RESULTS We found that females are smaller and live longer than males in this population, but the rate of accelerating mortality across adulthood is the same for both sexes. In contrast, males exhibited higher innate immunity than females for all three immune variables we measured. All immune responses also varied inversely with age, indicating immunosenescence. For females that reproduced in the preceding reproductive season, egg mass (and therefore total clutch mass) increased with age,. In addition to immunosenescence of bactericidal competence, females that produced smaller clutches also had lower bactericidal competence. CONCLUSIONS Contrary to the general vertebrate pattern of lower immune responses in males than females (possibly reflecting the suppressive effects of androgens), we found higher levels of all three immune variables in males. In addition, contrary to previous work that found no evidence of immunosenescence in painted turtles or red-eared slider turtles, we found a decrease in bactericidal competence, lysis ability, and natural antibodies with age in yellow mud turtles.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
- Department of Integrative Biology, Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Rd., Hickory Corners, MI 49060 USA
| | - Ashley R. Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Greta A. Kutz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Beth Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625 USA
| | - John B. Iverson
- Department of Biology, Earlham College, Richmond, IN 47374 USA
| |
Collapse
|
2
|
Streeting LM, Bower DS, Dillon ML, Spark P, Gough M, Skidmore A, McDonald PG, Delaney H, Burns A, Watson S, Dissanayake DSB, Georges A, McKnight DT. Optimising the hatching success of artificially incubated eggs for use in a conservation program for the western saw-shelled turtle (. AUST J ZOOL 2022. [DOI: 10.1071/zo22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial incubation of eggs and the release of hatchlings into the wild is a common conservation intervention designed to augment threatened turtle populations. We investigate a range of incubation temperatures to establish an optimal temperature for maximum hatching success of western saw-shelled turtle (Myuchelys bellii) eggs. We report on the influence of incubation temperature on incubation duration and hatching success and describe two experimental incubation methods which, for the same incubation temperature (27°C), resulted in 77% and 97% hatching success, respectively. Eggs were incubated at constant temperatures (27°C, 28°C and 29°C) to determine the influence of temperature on incubation period, hatchling morphology and external residual yolk. Incubation duration was negatively correlated with incubation temperature. We report on the morphology of eggs and hatchlings and show that their dimensions are positively correlated with maternal adult size and mass. A constant incubation temperature of 27°C produced the highest hatching success and smallest external residual yolk on hatching and is therefore recommended for incubation of eggs for population reinforcement programs. Our study is the first to optimise artificial incubation procedures for M. bellii and will be a valuable resource for M. bellii and other threatened freshwater turtle conservation initiatives.
Collapse
|
3
|
Jorgewich-Cohen G, Henrique RS, Dias PH, Sánchez-Villagra MR. The evolution of reproductive strategies in turtles. PeerJ 2022; 10:e13014. [PMID: 35295558 PMCID: PMC8919852 DOI: 10.7717/peerj.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
Optimal egg size theory assumes that changes in the egg and clutch are driven by selection, resulting in adjustments for the largest possible production of offspring with the highest fitness. Evidence supports the idea that large-bodied turtles tend to produce larger clutches with small and round eggs, while smaller species produce small clutches with large and elongated eggs. Our goals were to investigate whether egg and clutch size follow the predictions of egg size theory, if there are convergent reproductive strategies, and identify ecological factors that influence clutch and egg traits across all clades of living turtles. Using phylogenetic methods, we tested the covariance among reproductive traits, if they are convergent among different turtle lineages, and which ecological factors influence these traits. We found that both egg shape and size inversely correlate with clutch size, although with different evolutionary rates, following the predictions of the egg size theory. We also present compelling evidence for convergence among different turtle clades, over at least two reproductive strategies. Furthermore, climatic zone is the only ecological predictor to influence both egg size and fecundity, while diet only influences egg size. We conclude that egg and clutch traits in Testudines evolved independently several times across non-directly related clades that converged to similar reproductive strategies. Egg and clutch characteristics follow the trade-offs predicted by egg size theory and are influenced by ecological factors. Climatic zone and diet play an important role in the distribution of reproductive characteristics among turtles.
Collapse
Affiliation(s)
| | - Rafael S. Henrique
- Laboratório de Anfíbios, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Henrique Dias
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
4
|
Bock SL, Hale MD, Rainwater TR, Wilkinson PM, Parrott BB. Incubation Temperature and Maternal Resource Provisioning, but Not Contaminant Exposure, Shape Hatchling Phenotypes in a Species with Temperature-Dependent Sex Determination. THE BIOLOGICAL BULLETIN 2021; 241:43-54. [PMID: 34436964 DOI: 10.1086/714572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractThe environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9-10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination.
Collapse
|
5
|
Wang J, Liu Y, Fong JJ, Parham JF, Shi H. Reproductive Ecology of the Hainan Four Eye-Spotted Turtle (Sacalia insulensis) on Hainan Island, China. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1383.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China [; ]
| | - Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA []
| | | | - James F. Parham
- Department of Geological Sciences, California State University, Fullerton, Fullerton, California 92834 USA []
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China [; ]
| |
Collapse
|
6
|
Lindeman PV. Comparative Reproductive Allometry of Syntopic Black-Knobbed Sawbacks (Graptemys nigrinoda) and Alabama Map Turtles (Graptemys pulchra) in the Alabama River, with Comparison to Three Congeners. CHELONIAN CONSERVATION AND BIOLOGY 2020. [DOI: 10.2744/ccb-1399.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter V. Lindeman
- Department of Biology and Health Sciences, Edinboro University of Pennsylvania, 230 Scotland Road, Edinboro, Pennsylvania 16444 USA []
| |
Collapse
|
7
|
Sadoul B, Geffroy B, Lallement S, Kearney M. Multiple working hypotheses for hyperallometric reproduction in fishes under metabolic theory. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Silva KMP, Braz HB, Kasperoviczus KN, Marques OAV, Almeida-Santos SM. Reproduction in the pitviper Bothrops jararacussu: large females increase their reproductive output while small males increase their potential to mate. ZOOLOGY 2020; 142:125816. [PMID: 32739536 DOI: 10.1016/j.zool.2020.125816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022]
Abstract
Reproductive traits vary widely within and among snake species, and are influenced by a range of factors. However, additional studies are needed on several species, especially on tropical snake faunas, to fully understand the patterns of reproductive variation in snakes. Here, we characterized the reproductive biology of B. jararacussu from southeastern and southern Brazil. We combined macroscopic and microscopic examinations of the reproductive system of museum specimens with observations of free-ranging snakes to characterize size at sexual maturity, sexual size dimorphism (SSD), reproductive output, and male and female reproductive cycles. We compared our data with published literature and discuss the factors that may play a role in shaping the reproductive patterns in the species and the genus. Bothrops jararacussu shares several characteristics with its congeners such as autumn mating season, obligatory sperm storage in the female reproductive tract, seasonal timing of parturition (summer-autumn), female-biased SSD, maturity at larger body sizes in females, and a positive relationship between body size and litter size. These characteristics seem phylogenetically conserved in Bothrops. On the other hand, B. jararacussu exhibits some unique characteristics such as a high degree of SSD (one of the highest values recorded in snakes), a large female body size, and a large litter and offspring size, which are among the largest recorded in the genus. Moreover, larger females reproduce more frequently than smaller conspecifics. These characteristics may be collectively interpreted as the result of a strong selection for increased fecundity. Other peculiarities of the species include an asynchrony between spermiogenesis (summer-autumn) and the peak of SSK hypertrophy (autumn to spring) and a prolonged production of SSK granules. Because SSK hypertrophy and mating are androgen-dependent in snakes, the prolonged SSK hypertrophy suggests that male B. jararacussu may prolong their potential to mate (compared with its congeners), which may increase their reproductive success. Our results and previous literature collectively suggest that, in Bothrops, the evolution of SSD is driven by fecundity selection, variation in reproductive output is influenced by variation in female body size, and the timing of spermiogenesis is influenced by other factors in addition to temperature. We also suggest that male Bothrops have undergone multiple evolutionary shifts in the timing of spermiogenesis.
Collapse
Affiliation(s)
- Karina M P Silva
- Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05530-900, São Paulo, SP, Brazil; Programa de Pós-graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, CEP 05508-010, São Paulo, SP, Brazil
| | - Henrique B Braz
- Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05530-900, São Paulo, SP, Brazil.
| | - Karina N Kasperoviczus
- Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05530-900, São Paulo, SP, Brazil
| | - Otavio A V Marques
- Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05530-900, São Paulo, SP, Brazil
| | - Selma M Almeida-Santos
- Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05530-900, São Paulo, SP, Brazil
| |
Collapse
|