1
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
2
|
Timmins-Schiffman E, White SJ, Thompson RE, Vadopalas B, Eudeline B, Nunn BL, Roberts SB. Coupled microbiome analyses highlights relative functional roles of bacteria in a bivalve hatchery. ENVIRONMENTAL MICROBIOME 2021; 16:7. [PMID: 33902744 PMCID: PMC8066469 DOI: 10.1186/s40793-021-00376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities are ubiquitous throughout ecosystems and are commensal with hosts across taxonomic boundaries. Environmental and species-specific microbiomes are instrumental in maintaining ecosystem and host health, respectively. The introduction of pathogenic microbes that shift microbiome community structure can lead to illness and death. Understanding the dynamics of microbiomes across a diversity of environments and hosts will help us to better understand which taxa forecast survival and which forecast mortality events. RESULTS We characterized the bacterial community microbiome in the water of a commercial shellfish hatchery in Washington state, USA, where the hatchery has been plagued by recurring and unexplained larval mortality events. By applying the complementary methods of metagenomics and metaproteomics we were able to more fully characterize the bacterial taxa in the hatchery at high (pH 8.2) and low (pH 7.1) pH that were metabolically active versus present but not contributing metabolically. There were shifts in the taxonomy and functional profile of the microbiome between pH and over time. Based on detected metagenomic reads and metaproteomic peptide spectral matches, some taxa were more metabolically active than expected based on presence alone (Deltaproteobacteria, Alphaproteobacteria) and some were less metabolically active than expected (e.g., Betaproteobacteria, Cytophagia). There was little correlation between potential and realized metabolic function based on Gene Ontology analysis of detected genes and peptides. CONCLUSION The complementary methods of metagenomics and metaproteomics contribute to a more full characterization of bacterial taxa that are potentially active versus truly metabolically active and thus impact water quality and inter-trophic relationships.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Samuel J. White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| | - Rhonda Elliott Thompson
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
- Mason County Public Health, 415 N 6th St., Shelton, WA 98584 USA
| | - Brent Vadopalas
- Washington Sea Grant, University of Washington, 3716 Brooklyn Ave NE, Seattle, WA 98105 USA
| | - Benoit Eudeline
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| |
Collapse
|
3
|
López-Landavery EA, Carpizo-Ituarte EJ, Pérez-Carrasco L, Díaz F, la Cruz FLD, García-Esquivel Z, Hernández-Ayón JM, Galindo-Sánchez CE. Acidification stress effect on umbonate veliger larval development in Panopea globosa. MARINE POLLUTION BULLETIN 2021; 163:111945. [PMID: 33444999 DOI: 10.1016/j.marpolbul.2020.111945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Ocean acidification generates a decrease in calcium carbonate availability essential for biomineralization in organisms such as mollusks. This effect was evaluated on Panopea globosa exposing for 7 days umbonate veliger larvae to two pH treatments: experimental (pH 7.5) and control (pH 8.0). Exposure to pH 7.5 affected growth, reducing larval shell length from 5.15-13.34% compared to the control group. This size reduction was confirmed with electron microscopy, also showing shell damage. The physiological response showed an increase in oxygen consumption in larvae exposed to low pH with a maximum difference of 1.57 nmol O2 h-1 larvae-1 at day 7. The gene expression analyses reported high expression values for nicotinamide adenine dinucleotide (NADH) dehydrogenase and Perlucin in larvae at pH 7.5, suggesting a higher energetic cost in this larval group to maintain homeostasis. In conclusion, this study showed that acidification affected development of P. globosa umbonate veliger larvae.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genómica Funcional, Departmento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Eugenio J Carpizo-Ituarte
- Laboratorio de Ecología y Biología del Desarrollo, Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada No. 3917, Ensenada, B.C, Mexico
| | - Leonel Pérez-Carrasco
- Laboratorio de Genómica Funcional, Departmento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Fernando Díaz
- Laboratorio de Genómica Funcional, Departmento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Fabiola Lafarga-De la Cruz
- Departamento de Acuicultura, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Zaul García-Esquivel
- Laboratorio de Biotecnología de Moluscos, Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada No. 3917, Ensenada, B.C, Mexico
| | - José M Hernández-Ayón
- Laboratorio de Biogeoquímica Marina, Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada No. 3917, Ensenada, B.C, Mexico
| | - Clara E Galindo-Sánchez
- Laboratorio de Genómica Funcional, Departmento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, B.C, Mexico.
| |
Collapse
|
4
|
Temporal proteomic profiling reveals insight into critical developmental processes and temperature-influenced physiological response differences in a bivalve mollusc. BMC Genomics 2020; 21:723. [PMID: 33076839 PMCID: PMC7574277 DOI: 10.1186/s12864-020-07127-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Background Protein expression patterns underlie physiological processes and phenotypic differences including those occurring during early development. The Pacific oyster (Crassostrea gigas) undergoes a major phenotypic change in early development from free-swimming larval form to sessile benthic dweller while proliferating in environments with broad temperature ranges. Despite the economic and ecological importance of the species, physiological processes occurring throughout metamorphosis and the impact of temperature on these processes have not yet been mapped out. Results Towards this, we comprehensively characterized protein abundance patterns for 7978 proteins throughout metamorphosis in the Pacific oyster at different temperature regimes. We used a multi-statistical approach including principal component analysis, ANOVA-simultaneous component analysis, and hierarchical clustering coupled with functional enrichment analysis to characterize these data. We identified distinct sets of proteins with time-dependent abundances generally not affected by temperature. Over 12 days, adhesion and calcification related proteins acutely decreased, organogenesis and extracellular matrix related proteins gradually decreased, proteins related to signaling showed sinusoidal abundance patterns, and proteins related to metabolic and growth processes gradually increased. Contrastingly, different sets of proteins showed temperature-dependent abundance patterns with proteins related to immune response showing lower abundance and catabolic pro-growth processes showing higher abundance in animals reared at 29 °C relative to 23 °C. Conclusion Although time was a stronger driver than temperature of metamorphic proteome changes, temperature-induced proteome differences led to pro-growth physiology corresponding to larger oyster size at 29 °C, and to altered specific metamorphic processes and possible pathogen presence at 23 °C. These findings offer high resolution insight into why oysters may experience high mortality rates during this life transition in both field and culture settings. The proteome resource generated by this study provides data-driven guidance for future work on developmental changes in molluscs. Furthermore, the analytical approach taken here provides a foundation for effective shotgun proteomic analyses across a variety of taxa.
Collapse
|
5
|
Timmins-Schiffman E, Guzmán JM, Elliott Thompson R, Vadopalas B, Eudeline B, Roberts SB. Larval Geoduck (Panopea generosa) Proteomic Response to Ciliates. Sci Rep 2020; 10:6042. [PMID: 32269285 PMCID: PMC7142153 DOI: 10.1038/s41598-020-63218-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
The innate immune response is active in invertebrate larvae from early development. Induction of immune response pathways may occur as part of the natural progression of larval development, but an up-regulation of pathways can also occur in response to a pathogen. Here, we took advantage of a protozoan ciliate infestation of a larval geoduck clam culture in a commercial hatchery to investigate the molecular underpinnings of the innate immune response of the larvae to the pathogen. Larval proteomes were analyzed on days 4-10 post-fertilization; ciliates were present on days 8 and 10 post-fertilization. Through comparisons with larval cultures that did not encounter ciliates, proteins implicated in the response to ciliate presence were identified using mass spectrometry-based proteomics. Ciliate response proteins included many associated with ribosomal synthesis and protein translation, suggesting the importance of protein synthesis during the larval immune response. There was also an increased abundance of proteins typically associated with the stress and immune responses during ciliate exposure, such as heat shock proteins, glutathione metabolism, and the reactive oxygen species response. These findings provide a basic understanding of the bivalve molecular response to a mortality-inducing ciliate and improved characterization of the ontogenetic development of the innate immune response.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- University of Washington, Department of Genome Sciences, 3720 15th Ave NE, Seattle, WA, 98195, United States
| | - José M Guzmán
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States
| | - Rhonda Elliott Thompson
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA, 98376, United States
- Mason County Public Health, 415N 6th St., Shelton, WA, 98584, United States
| | - Brent Vadopalas
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States
| | - Benoit Eudeline
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA, 98376, United States
| | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States.
| |
Collapse
|