1
|
Gregory KA, Francesiaz C, Jiguet F, Besnard A. A synthesis of recent tools and perspectives in migratory connectivity studies. MOVEMENT ECOLOGY 2023; 11:69. [PMID: 37891684 PMCID: PMC10605477 DOI: 10.1186/s40462-023-00388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 04/17/2023] [Indexed: 10/29/2023]
Abstract
Migration movements connect breeding and non-breeding bird populations over the year. Such links, referred to as migratory connectivity, have important implications for migratory population dynamics as they dictate the consequences of localised events for the whole population network. This calls for concerted efforts to understand migration processes for large-scale conservation. Over the last 20 years, the toolbox to investigate connectivity patterns has expanded and studies now consider migratory connectivity over a broader range of species and contexts. Here, we summarise recent developments in analysing migratory connectivity, focusing on strategies and challenges to pooling various types of data to both optimise and broaden the scope of connectivity studies. We find that the different approaches used to investigate migratory connectivity still have complementary strengths and weaknesses, whether in terms of cost, spatial and temporal resolution, or challenges in obtaining large sample sizes or connectivity estimates. Certain recent developments offer particularly promising prospects: robust quantitative models for banding data, improved precision of geolocators and accessibility of telemetry tracking systems, and increasingly precise probabilistic assignments based on genomic markers or large-scale isoscapes. In parallel, studies have proposed various ways to combine the information of different datasets, from simply comparing the connectivity patterns they draw to formally integrating their analyses. Such data combinations have proven to be more accurate in estimating connectivity patterns, particularly for integrated approaches that offer promising flexibility. Given the diversity of available tools, future studies would benefit from a rigorous comparative evaluation of the different methodologies to guide data collection to complete migration atlases: where and when should data be collected during the migratory cycle to best describe connectivity patterns? Which data are most favourable to combine, and under what conditions? Are there methods for combining data that are better than others? Can combination methods be improved by adjusting the contribution of the various data in the models? How can we fully integrate connectivity with demographic and environmental data? Data integration shows strong potential to deepen our understanding of migratory connectivity as a dynamic ecological process, especially if the gaps can be bridged between connectivity, population and environmental models.
Collapse
Affiliation(s)
- Killian A Gregory
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
- CESCO, MNHN-CNRS-Sorbonne Université, Paris, France.
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | | | | | - Aurélien Besnard
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
2
|
Turbek SP, Schield DR, Scordato ESC, Contina A, Da XW, Liu Y, Liu Y, Pagani-Núñez E, Ren QM, Smith CCR, Stricker CA, Wunder M, Zonana DM, Safran RJ. A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution 2022; 76:722-736. [PMID: 35166383 DOI: 10.1111/evo.14448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/22/2023]
Abstract
Migratory divides are contact zones between breeding populations with divergent migratory strategies during the nonbreeding season. These locations provide an opportunity to evaluate the role of seasonal migration in the maintenance of reproductive isolation, particularly the relationship between population structure and features associated with distinct migratory strategies. We combine light-level geolocators, genomic sequencing, and stable isotopes to investigate the timing of migration and migratory routes of individuals breeding on either side of a migratory divide coinciding with genomic differentiation across a hybrid zone between barn swallow (Hirundo rustica) subspecies in China. Individuals west of the hybrid zone, with H. r. rustica ancestry, had comparatively enriched stable-carbon and hydrogen isotope values and overwintered in eastern Africa, whereas birds east of the hybrid zone, with H. r. gutturalis ancestry, had depleted isotope values and migrated to southern India. The two subspecies took divergent migratory routes around the high-altitude Karakoram Range and arrived on the breeding grounds over 3 weeks apart. These results indicate that assortative mating by timing of arrival and/or selection against hybrids with intermediate migratory traits may maintain reproductive isolation between the subspecies, and that inhospitable geographic features may have contributed to the diversification of Asian avifauna by influencing migratory patterns.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309.,Department of Biological Sciences, Cal Poly Pomona, Pomona, California, 91768
| | - Andrea Contina
- Department of Integrative Biology, University of Colorado, Denver, Colorado, 80217
| | - Xin-Wei Da
- College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Liu
- Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Emilio Pagani-Núñez
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing-Miao Ren
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chris C R Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Craig A Stricker
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, 80526
| | - Michael Wunder
- Department of Integrative Biology, University of Colorado, Denver, Colorado, 80217
| | - David M Zonana
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309.,Department of Biological Sciences, University of Denver, Denver, Colorado, 80210
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| |
Collapse
|