1
|
Yan W, Du L, Liu H, Li GY. Current and future invasion risk of tomato red spider mite under climate change. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae140. [PMID: 38935039 DOI: 10.1093/jee/toae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Tomato red spider mite Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae) is a phytophagous pest that causes severe damage to Solanaceous plants worldwide, resulting in significant economic losses. In this study, the maximum entropy model was used to predict the potential current (1970-2000) and future (2021-2060) global distribution of the species based on its past occurrence records and high-resolution environmental data. The results showed that the mean values of the area under the curve were all >0.96, indicating that the model performed well. The three bioclimatic variables with the highest contributions were the coldest quarterly mean temperature (bio11), coldest monthly minimum temperature (bio6), and annual precipitation (bio12). A wide range of suitable areas was found across continents except Antarctica, both currently and in the future, with a much larger distribution area in South America, Africa, and Oceania (Australia), dominated by moderately and low suitable areas. A comparison of current and future suitable areas reveals a general trend of north expansion and increasing expansion over time. This study provides information for the prevention and management of this pest mite in the future.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liyan Du
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guang-Yun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Cui JR, Zhou B, Tang YJ, Zhou JY, Ren L, Liu F, Hoffmann AA, Hong XY. A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1493-1509. [PMID: 37952109 DOI: 10.1093/jxb/erad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
3
|
Dady ER, Kleczewski N, Ugarte CM, Ngumbi E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 2023; 49:710-724. [PMID: 37924424 DOI: 10.1007/s10886-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs) that mediate vital ecological interactions between herbivorous insects, their natural enemies, plants, and soil dwelling organisms including arbuscular mycorrhizal fungi (AMF). The composition, quantity, and quality of the emitted VOCs can vary and is influenced by numerous factors such as plant species, variety (cultivar), plant developmental stage, root colonization by soil microbes, as well as the insect developmental stage, and level of specialization of the attacking herbivore. Understanding factors shaping VOC emissions is important and can be leveraged to enhance plant health and pest resistance. In this greenhouse study, we evaluated the influence of plant variety, mycorrhizal colonization, herbivory, and their interactions on the composition of emitted volatiles in tomato plants (Solanum lycopersicum L.). Four tomato varieties from two breeding histories (two heirlooms and two hybrids), were used. Tomato plants were inoculated with a commercial inoculum blend consisting of four species of AMF. Plants were also subjected to herbivory by Manduca sexta (Lepidoptera: Sphingidae L.) five weeks after transplanting. Headspace volatiles were collected from inoculated and non-inoculated plants with and without herbivores using solid phase-microextraction. Volatile profiles consisted of 21 different volatiles in detectable quantities. These included monoterpenes, sesquiterpenes, and alkane hydrocarbons. We documented a strong plant variety effect on VOC emissions. AMF colonization and herbivory suppressed VOC emissions. Plant biomass was improved by colonization of AMF. Our results show that mycorrhization, herbivory and plant variety can alter tomato plant VOC emissions and further shape volatile-mediated insect and plant interactions.
Collapse
Affiliation(s)
- Erinn R Dady
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Esther Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Teodoro-Paulo J, Alba JM, Charlesworth S, Kant MR, Magalhães S, Duncan AB. Intraspecific variation for host immune activation by the spider mite Tetranychus evansi. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230525. [PMID: 37325599 PMCID: PMC10265008 DOI: 10.1098/rsos.230525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Many parasites can interfere with their host's defences to maximize their fitness. Here, we investigated if there is heritable variation in the spider mite Tetranychus evansi for traits associated with how they interact with their host plant. We also determined if this variation correlates with mite fecundity. Tetranychus evansi can interfere with jasmonate (JA) defences which are the main determinant of anti-herbivore immunity in plants. We investigated (i) variation in fecundity in the presence and absence of JA defences, making use of a wild-type tomato cultivar and a JA-deficient mutant (defenseless-1), and (ii) variation in the induction of JA defences, in four T. evansi field populations and 59 inbred lines created from an outbred population originating from controlled crosses of the four field populations. We observed a strong positive genetic correlation between fecundity in the presence (on wild-type) and the absence of JA defences (on defenseless-1). However, fecundity did not correlate with the magnitude of induced JA defences in wild-type plants. Our results suggest that the performance of the specialist T. evansi is not related to their ability to manipulate plant defences, either because all lines can adequately reduce levels of defences, or because they are resistant to them.
Collapse
Affiliation(s)
- Jéssica Teodoro-Paulo
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Institut des Sciences de l’Évolution, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Juan M. Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven Charlesworth
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Merijn R. Kant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara Magalhães
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Alison B. Duncan
- Institut des Sciences de l’Évolution, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
5
|
Lemos F, Bajda S, Duarte MVA, Alba JM, Van Leeuwen T, Pallini A, Sabelis MW, Janssen A. Imperfect diet choice reduces the performance of a predatory mite. Oecologia 2023; 201:929-939. [PMID: 36947271 PMCID: PMC10113300 DOI: 10.1007/s00442-023-05359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Two mutually unexclusive hypotheses prevail in the theory of nutritional ecology: the balanced diet hypothesis states that consumers feed on different food items because they have complementary nutrient and energy compositions. The toxin-dilution hypothesis poses that consumers feed on different food items to dilute the toxins present in each. Both predict that consumers should not feed on low-quality food when ample high-quality food forming a complete diet is present. We investigated the diet choice of Phytoseiulus persimilis, a predatory mite of web-producing spider mites. It can develop and reproduce on single prey species, for example the spider mite Tetranychus urticae. A closely related prey, T. evansi, is of notorious bad quality for P. persimilis and other predator species. We show that juvenile predators feeding on this prey have low survival and do not develop into adults. Adults stop reproducing and have increased mortality when feeding on it. Feeding on a mixed diet of the two prey decreases predator performance, but short-term effects of feeding on the low-quality prey can be partially reversed by subsequently feeding on the high-quality prey. Yet, predators consume low-quality prey in the presence of high-quality prey, which is in disagreement with both hypotheses. We suggest that it is perhaps not the instantaneous reproduction on single prey or mixtures of prey that matters for the fitness of predators, but that it is the overall reproduction by a female and her offspring on an ephemeral prey patch, which may be increased by including inferior prey in their diet.
Collapse
Affiliation(s)
- Felipe Lemos
- Department of Evolutionary and Population Ecology, IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Laboratory of Acarology, Department of Entomology, Federal University of Viçosa, 36, Viçosa, MG, 570-000, Brazil
- Ecofit- Bioinsumos, Araxá, MG, Brazil
| | - Sabina Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marcus V A Duarte
- Department of Evolutionary and Population Ecology, IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Laboratory of Acarology, Department of Entomology, Federal University of Viçosa, 36, Viçosa, MG, 570-000, Brazil
- R&D Department, Biobest Group NV, Westerlo, Belgium
| | - Juan M Alba
- Department of Evolutionary and Population Ecology, IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Angelo Pallini
- Laboratory of Acarology, Department of Entomology, Federal University of Viçosa, 36, Viçosa, MG, 570-000, Brazil
| | - Maurice W Sabelis
- Department of Evolutionary and Population Ecology, IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Arne Janssen
- Department of Evolutionary and Population Ecology, IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
- Laboratory of Acarology, Department of Entomology, Federal University of Viçosa, 36, Viçosa, MG, 570-000, Brazil.
| |
Collapse
|
6
|
Arbona V, Ximénez-Embún MG, Echavarri-Muñoz A, Martin-Sánchez M, Gómez-Cadenas A, Ortego F, González-Guzmán M. Early Molecular Responses of Tomato to Combined Moderate Water Stress and Tomato Red Spider Mite Tetranychus evansi Attack. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091131. [PMID: 32878349 PMCID: PMC7570366 DOI: 10.3390/plants9091131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 05/25/2023]
Abstract
Interaction between plants and their environment is changing as a consequence of the climate change and global warming, increasing the performance and dispersal of some pest species which become invasive species. Tetranychus evansi also known as the tomato red spider mite, is an invasive species which has been reported to increase its performance when feeding in the tomato cultivar Moneymaker (MM) under water deficit conditions. In order to clarify the underlying molecular events involved, we examined early plant molecular changes occurring on MM during T. evansi infestation alone or in combination with moderate drought stress. Hormonal profiling of MM plants showed an increase in abscisic acid (ABA) levels in drought-stressed plants while salicylic acid (SA) levels were higher in drought-stressed plants infested with T. evansi, indicating that SA is involved in the regulation of plant responses to this stress combination. Changes in the expression of ABA-dependent DREB2, NCED1, and RAB18 genes confirmed the presence of drought-dependent molecular responses in tomato plants and indicated that these responses could be modulated by the tomato red spider mite. Tomato metabolic profiling identified 42 differentially altered compounds produced by T. evansi attack, moderate drought stress, and/or their combination, reinforcing the idea of putative manipulation of tomato plant responses by tomato red spider mite. Altogether, these results indicate that the tomato red spider mite acts modulating plant responses to moderate drought stress by interfering with the ABA and SA hormonal responses, providing new insights into the early events occurring on plant biotic and abiotic stress interaction.
Collapse
Affiliation(s)
- Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
| | - Miguel G. Ximénez-Embún
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Alberto Echavarri-Muñoz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Marcos Martin-Sánchez
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Miguel González-Guzmán
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| |
Collapse
|