1
|
Luo W, Sun C, Yang S, Chen W, Sun Y, Li Z, Liu J, Tao W, Tao J. Contrasting range changes and drivers of four forest foundation species under future climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173784. [PMID: 38851330 DOI: 10.1016/j.scitotenv.2024.173784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Forest foundation species, vital for shaping community structure and dynamics through non-trophic level interactions, are key to forest succession and sustainability. Despite their ecological importance, the habitat ranges of these species in China and their responses to future climate change remain unclear. Our study employed the optimal MaxEnt model to assess the range shifts and their essential drivers of four typical forest foundation species from three climatic zones in China under climate scenarios, including Acer tegmentosum, Acer pseudo-sieboldianum (temperate zone), Quercus glandulifera (subtropical zone), and Ficus hispida (tropical zone). The optimal MaxEnt model exhibited high evaluation indices (AUC values > 0.90) for the four foundation species, indicating excellent predictive performance. Currently, we observed that A. tegmentosum and A. pseudo-sieboldianum are predominantly inhabited temperate forest areas in northeastern China, Q. glandulifera is primarily concentrated in subtropical forests in southeastern China, and F. hispida is mainly distributed across the tropical forests in southern China. Climate factors, particularly temperature, emerged as the primary environmental factors influencing the potential range of forest foundation species. Moreover, precipitation strongly influenced the potential range of A. tegmentosum and A. pseudo-sieboldianum, while elevation exhibited a greater impact on the range of Q. glandulifera and F. hispida. Under future climate scenarios, suitable areas for A. tegmentosum and A. pseudo-sieboldianum tend to expand southward, F. hispida tends to expand northward, while Q. glandulifera exhibited a tendency to contract towards the center. This study advances our understanding of the spatial and temporal dynamics of forest foundation species in China under climate change, providing critical insights for conservation efforts and sustainable forest management practices.
Collapse
Affiliation(s)
- Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Chengxiang Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenke Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhong Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Guiquan S, Jiali F, Shuai G, Wenya H, Xiangkun K, Sheng Z, Yueling Z, Xuelian J. Geographic distribution and impacts of climate change on the suitable habitats of Rhamnus utilis Decne in China. BMC PLANT BIOLOGY 2023; 23:592. [PMID: 38008724 PMCID: PMC10680213 DOI: 10.1186/s12870-023-04574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Rhamnus utilis Decne (Rhamnaceae) is an ecologically and economically important tree species. The growing market demands and recent anthropogenic impacts to R. utilis forests has negatively impacted its populations severely. However, little is known about the potential distribution of this species and environmental factors that affect habitat suitability for this species. By using 219 occurrence records along with 51 environmental factors, present and future suitable habitats were estimated for R. utilis using Maxent modeling; the important environmental factors affecting its distribution were analyzed. RESULTS January water vapor pressure, normalized difference vegetation index, mean diurnal range, and precipitation of the warmest quarter represented the critical factors explaining the environmental requirements of R. utilis. The potential habitat of R. utilis included most provinces from central to southeast China. Under the climate change scenario SSP 245, Maxent predicted a cumulative loss of ca. 0.73 × 105 km2 in suitable habitat for R. utilis during 2041-2060 while an increase of ca. 0.65 × 105 km2 occurred during 2081-2100. Furthermore, under this climate change scenario, the suitable habitat will geographically expand to higher elevations. CONCLUSIONS The findings of our study provide a foundation for targeted conservation efforts and inform future research on R. utilis. By considering the identified environmental factors and anticipating the potential impacts of climate change, conservation strategies can be developed to preserve and restore suitable habitats for R. utilis. Protecting this species is not only crucial for maintaining biodiversity but also for sustaining the economic benefits associated with its ecological services.
Collapse
Affiliation(s)
- Song Guiquan
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Feng Jiali
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Gong Shuai
- Sinochem Agriculture Holdings Co. Ltd, Beijing, 1000323, China
| | - Hao Wenya
- Sinochem Agriculture Holdings Co. Ltd, Beijing, 1000323, China
| | - Kong Xiangkun
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Zhao Sheng
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Zhao Yueling
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Jiang Xuelian
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China.
| |
Collapse
|
3
|
Qiu L, Jacquemyn H, Burgess KS, Zhang LG, Zhou YD, Yang BY, Tan SL. Contrasting range changes of terrestrial orchids under future climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165128. [PMID: 37364836 DOI: 10.1016/j.scitotenv.2023.165128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Climate change has impacted the distribution and abundance of numerous plant and animal species during the last century. Orchidaceae is one of the largest yet most threatened families of flowering plants. However, how the geographical distribution of orchids will respond to climate change is largely unknown. Habenaria and Calanthe are among the largest terrestrial orchid genera in China and around the world. In this paper, we modeled the potential distribution of eight Habenaria species and ten Calanthe species in China under the near-current period (1970-2000) and the future period (2081-2100) to test the following two hypotheses: 1) narrow-ranged species are more vulnerable to climate change than wide-ranged species; 2) niche overlap between species is positively correlated with their phylogenetic relatedness. Our results showed that most Habenaria species will expand their ranges, although the climatic space at the southern edge will be lost for most Habenaria species. In contrast, most Calanthe species will shrink their ranges dramatically. Contrasting range changes between Habenaria and Calanthe species may be explained by their differences in climate-adaptive traits such as underground storage organs and evergreen/deciduous habits. Habenaria species are predicted to generally shift northwards and to higher elevations in the future, while Calanthe species are predicted to shift westwards and to higher elevations. The mean niche overlap among Calanthe species was higher than that of Habenaria species. No significant relationship between niche overlap and phylogenetic distance was detected for both Habenaria and Calanthe species. Species range changes in the future was also not correlated with their near current range sizes for both Habenaria and Calanthe. The results of this study suggest that the current conservation status of both Habenaria and Calanthe species should be adjusted. Our study highlights the importance of considering climate-adaptive traits in understanding the responses of orchid taxa to future climate change.
Collapse
Affiliation(s)
- Li Qiu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium
| | - Kevin S Burgess
- Department of Biology, College of Letters & Sciences, Columbus State University, University System of Georgia, Columbus, GA 31907-5645, USA
| | - Li-Guo Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ya-Dong Zhou
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bo-Yun Yang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shao-Lin Tan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
4
|
Bao R, Li X, Zheng J. Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant. PeerJ 2022; 10:e13337. [PMID: 35529480 PMCID: PMC9074863 DOI: 10.7717/peerj.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Pedicularis longiflora Rudolph and its variant (P. longiflora var. tubiformis (Klotzsch) Tsoong) are alpine plants and traditional Chinese medicines with important medicinal value, and future climate changes may have an adverse impact on their geographic distribution. The maximum entropy (MAXENT) model has the outstanding ability to predict the potential distribution region of species under climate change. Therefore, given the importance of the parameter settings of feature classes (FCs) and the regularization multiplier (RM) of the MAXENT model and the importance of add indicators to evaluate model performance, we used ENMeval to improve the MAXENT niche model and conducted an in-depth study on the potential distributions of these two alpine medicinal plants. We adjusted the parameters of FC and RM in the MAXENT model, evaluated the adjusted MAXENT model using six indicators, determined the most important ecogeographical factors (EGFs) that affect the potential distributions of these plants, and compared their current potential distributions between the adjusted model and the default model. The adjusted model performed better; thus, we used the improved MAXENT model to predict their future potential distributions. The model predicted that P. longiflora Rudolph and its variant (P. longiflora var. tubiformis (Klotzsch) Tsoong) would move northward and showed a decrease in extent under future climate scenarios. This result is important to predict their potential distribution regions under changing climate scenarios to develop effective long-term resource conservation and management plans for these species.
Collapse
Affiliation(s)
- Ru Bao
- College of Geographical Sciences, Xinjiang University, Urumqi, China,Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China,College of Vocational and Technical, Xinjiang Teacher’s College (Xinjiang Education Institute), Urumqi, China
| | - Xiaolong Li
- Department of Natural Resources of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianghua Zheng
- College of Geographical Sciences, Xinjiang University, Urumqi, China,Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PLoS One 2022; 17:e0262540. [PMID: 35358194 PMCID: PMC8970525 DOI: 10.1371/journal.pone.0262540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022] Open
Abstract
Climate is a dominant factor affecting the potential geographical distribution of species. Understanding the impact of climate change on the potential geographic distribution of species, which is of great significance to the exploitation, utilization, and protection of resources, as well as ecologically sustainable development. Betula platyphylla Suk. is one of the most widely distributed temperate deciduous tree species in East Asia and has important economic and ecological value. Based on 231 species distribution data points of Betula platyphylla Suk. in China and 37 bioclimatic, soil, and topography variables (with correlation coefficients < 0.75), the potential geographical distribution pattern of Betula platyphylla Suk. under Representative Concentration Pathway (RCP) climate change scenarios at present and in the 2050s and 2070s was predicted using the MaxEnt model. We analyzed the main environmental variables affecting the distribution and change of suitable areas and compared the scope and change of suitable areas under different climate scenarios. This study found: (1) At present, the main suitable area for Betula platyphylla Suk. extends from northeastern to southwestern China, with the periphery area showing fragmented distribution. (2) Annual precipitation, precipitation of the warmest quarter, mean temperature of the warmest quarter, annual mean temperature, and precipitation of the driest month are the dominant environmental variables that affect the potential geographical distribution of Betula platyphylla Suk. (3) The suitable area for Betula platyphylla Suk. is expected to expand under global warming scenarios. In recent years, due to the impact of diseases and insect infestation, and environmental damage, the natural Betula platyphylla Suk. forest in China has gradually narrowed. This study accurately predicted the potential geographical distribution of Betula platyphylla Suk. under current and future climate change scenarios, which can provide the scientific basis for the cultivation, management, and sustainable utilization of Betula platyphylla Suk. resources.
Collapse
|
6
|
Shao YZ, Yuan ZL, Liu YY, Liu FQ, Xiang RC, Zhang YY, Ye YZ, Chen Y, Wen Q. Glacial Expansion or Interglacial Expansion? Contrasting Demographic Models of Four Cold-Adapted Fir Species in North America and East Asia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding and forecasting species’ response to climate change is a critical need for future conservation and management. Two expansion hypotheses, the glacial expansion versus the interglacial expansion, have been proposed to interpret how cold-adapted organisms in the northern hemisphere respond to Quaternary climatic fluctuations. To test these two hypotheses, we originally used two pairs of high-low elevation firs from North America (Abies lasiocarpa and Abies balsamea) and East Asia (Abies chensiensis and Abies nephrolepis). Abies lasiocarpa and Abies chensiensis are widely distributed in high-elevation regions of western North America and central China. Abies balsamea and Abies nephrolepis occur in central North America and northeast China, with much lower elevations. These fir species are typical cold-adapted species and sensitive to climate fluctuations. Here, we integrated the mtDNA and cpDNA polymorphisms involving 44 populations and 585 individuals. Based on phylogeographic analyses, recent historical range expansions were indicated in two high-elevation firs (Abies lasiocarpa and Abies chensiensis) during the last glaciation (43.8–28.4 or 21.9–14.2 kya, 53.1–34.5 or 26.6–17.2 kya). Such glacial expansions in high-elevation firs were further confirmed by the evidence of species distribution modelling, geographic-driven genetic patterns, palynological records, and current distribution patterns. Unlike the north American firs, the SDM models indicated unremarkable expansion or contraction in East Asia firs for its much more stable conditions during different historical periods. Taken together, our findings highly supported that high-elevation firs experienced glacial expansion during the Quaternary climate change in East Asia and North America, as interglacial expansion within low-elevation firs. Under this situation, the critically endangered fir species distributed in high elevation would have no enough higher elevational space to migrate. Facing the increasing global warming, thus we proposed ex-situ conservation of defining conservation units as the most meaningful strategy.
Collapse
|
7
|
|
8
|
Guan J, Li M, Ju X, Lin J, Wu J, Zheng J. The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ 2021; 9:e12311. [PMID: 34754618 PMCID: PMC8555501 DOI: 10.7717/peerj.12311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Desert locusts are notorious for their widespread distribution and strong destructive power. Their influence extends from the vast arid and semiarid regions of western Africa to northwestern India. Large-scale locust outbreaks can have devastating consequences for food security, and their social impact may be long-lasting. Climate change has increased the uncertainty of desert locust outbreaks, and predicting suitable habitats for this species under climate change scenarios will help humans deal with the potential threat of locust outbreaks. By comprehensively considering climate, soil, and terrain variables, the maximum entropy (MaxEnt) model was used to predict the potential habitats of solitary desert locusts in the 2050s and 2070s under the four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) in the CMIP6 model. The modeling results show that the average area under the curve (AUC) and true skill statistic (TSS) reached 0.908 ± 0.002 and 0.701, respectively, indicating that the MaxEnt model performed extremely well and provided outstanding prediction results. The prediction results indicate that climate change will have an impact on the distribution of the potential habitat of solitary desert locusts. With the increase in radiative forcing overtime, the suitable areas for desert locusts will continue to contract, especially in the 2070s under the SSP585 scenario, and the moderately and highly suitable areas will decrease by 0.88 × 106 km2 and 1.55 × 106 km2, respectively. Although the potentially suitable area for desert locusts is contracting, the future threat posed by the desert locust to agricultural production and food security cannot be underestimated, given the combination of maintained breeding areas, frequent extreme weather events, pressure from population growth, and volatile sociopolitical environments. In conclusion, methods such as monitoring and early warning, financial support, regional cooperation, and scientific prevention and control of desert locust plagues should be further implemented.
Collapse
Affiliation(s)
- Jingyun Guan
- College of Resources & Environment Science, Xinjiang University, Urumqi, Xinjiang, China.,Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China.,College of Tourism, Xinjiang University of Finance & Economics, Urumqi, Xinjiang, China
| | - Moyan Li
- College of Resources & Environment Science, Xinjiang University, Urumqi, Xinjiang, China.,Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xifeng Ju
- College of Resources & Environment Science, Xinjiang University, Urumqi, Xinjiang, China.,Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jun Lin
- Locust and Rodent Control Headquarters of Xinjiang, Urumqi, Xinjiang, China
| | - Jianguo Wu
- Locust and Rodent Control Headquarters of Xinjiang, Urumqi, Xinjiang, China
| | - Jianghua Zheng
- College of Resources & Environment Science, Xinjiang University, Urumqi, Xinjiang, China.,Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China.,Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
9
|
Yan X, Wang S, Duan Y, Han J, Huang D, Zhou J. Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecol Evol 2021; 11:16099-16112. [PMID: 34824814 PMCID: PMC8601876 DOI: 10.1002/ece3.8288] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Climate change has a significant impact on the growth and distribution of vegetation worldwide. Hydrangea macrophylla is widely distributed and considered a model species for studying the distribution and responses of shrub plants under climate change. These results can inform decision-making regarding shrub plant protection, management, and introduction of germplasm resources, and are of great importance for formulating ecological countermeasures to climate change in the future. We used the maximum entropy model to predict the change, scope expansion/reduction, centroid movement, and dominant climate factors that restrict the growth and distribution of H. macrophylla in China under current and future climate change scenarios. It was found that both precipitation and temperature affect the distribution of suitable habitat for H. macrophylla. Akaike information criterion (AICc) was used to select the feature combination (FC) and the regularization multiplier (RM). After the establishment of the optimal model (FC = QP, RM = 0.5), the complexity and over-fitting degree of the model were low (delta AICc = 0, omission rate = 0.026, difference between training and testing area under the curve values = 0.0009), indicating that it had high accuracy in predicting the potential geographical distribution of H. macrophylla (area under the curve = 0.979). Overall, from the current period to future, the potential suitable habitat of this species in China expanded to the north. The greenhouse effect caused by an increase in CO2 emissions would not only increase the area of high-suitability habitat in Central China, but also expand the area of total suitable habitat in the north. Under the maximum greenhouse gas emission scenario (RCP8.5), the migration distance of the centroid was the longest (e.g., By 2070s, the centroids of total and highly suitable areas have shifted 186.15 km and 89.84 km, respectively).
Collapse
Affiliation(s)
- Xingyue Yan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Shuchen Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yu Duan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Jing Han
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Donghua Huang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Jian Zhou
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- College of Biology and EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
10
|
Predicting Suitable Environments and Potential Occurrences for Cinnamomum camphora (Linn.) Presl. FORESTS 2021. [DOI: 10.3390/f12081126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global climate change has created a major threat to biodiversity. However, little is known about the habitat and distribution characteristics of Cinnamomum camphora (Linn.) Presl., an evergreen tree growing in tropical and subtropical Asia, as well as the factors influencing its distribution. The present study employed Maxent and a GARP to establish a potential distribution model for the target species based on 182 known occurrence sites and 17 environmental variables. The results indicate that Maxent performed better than GARP. The mean diurnal temperature range, annual precipitation, mean air temperature of driest quarter and sunshine duration in growing season were important environmental factors influencing the distribution of C. camphora and contributed 40.9%, 23.0%, 10.5%, and 7.2% to the variation in the model contribution, respectively. Based on the models, the subtropical and temperate regions of Eastern China, where the species has been recorded, had a high suitability for this species. Under each climate change scenario, the potential geographical distribution shifted farther north and toward a higher elevation. The predicted spatial and temporal distribution patterns of this species can provide guidance for the development strategies for forest management and species protection.
Collapse
|
11
|
Kong F, Tang L, He H, Yang F, Tao J, Wang W. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34655-34663. [PMID: 33655479 DOI: 10.1007/s11356-021-13121-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/19/2021] [Indexed: 05/27/2023]
Abstract
Models that evaluate the potential geographic distribution of species can be used with a variety of important applications in conservation biology. Osmanthus fragrans has high ornamental, culinary, and medicinal value, and is widely used in landscaping. However, its preferred habitat and the environmental factors that determine its distribution remain largely unknown; the environmental factors that shape its suitability also require analysis. Based on 89 occurrence records and 30 environmental variables, this study constructed Maxent models for current as well as future appropriate habitats for O. fragrans. The results indicate that UV-B seasonality (19.1%), precipitation seasonality (18.8%), annual temperature range (13.1%), and mean diurnal temperature range (12.5%) were the most important factors used for interpreting the environmental demands for this species. Highly appropriate habitats for O. fragrans were mainly distributed in southwestern Jiangsu, southern Anhui, Shanghai, Zhejiang, Fujian, northern Guangdong, Guangxi, southern Hunan, southern Hubei, Sichuan, and Taiwan. Under climate change scenarios, the spatial extent of the area of suitable distribution will decrease, and the distribution center of O. fragrans will shift to the southwest. The results of this study will help land managers to avoid blindly introducing this species into inappropriate habitat while improving O. fragrans yield and quality.
Collapse
Affiliation(s)
- Fen Kong
- Suzhou Industrial Park Gardens, Suzhou, 215000, Republic of China
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, People's Republic of China
| | - Ling Tang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, People's Republic of China
| | - Huan He
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, People's Republic of China
| | - Fuxia Yang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, People's Republic of China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, People's Republic of China.
| | - Weicheng Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, People's Republic of China.
| |
Collapse
|