1
|
Wang Y, Wang Y, Zhou J, Bao M, Shah T, Yang S, Zheng J, Li Q, Hou Y, Wang B, Yuan R. Exploring the gut microbiota of healthy captive Asian elephants from various locations in Yunnan, China. Front Microbiol 2024; 15:1403930. [PMID: 39397790 PMCID: PMC11468275 DOI: 10.3389/fmicb.2024.1403930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction The Asian elephant (Elephas maximus) is a giant herbivore classified as an endangered wildlife species by the International Union for Conservation of Threatened Species.This study aims to investigate and compare the core gut microbiota of captive Asian elephants from three different locations in Yunnan Province, China, to explore the impact of environmental and husbandry factors on microbial diversity. Methods We collected fecal samples from 29 captive Asian elephants from three locations and performed full-length 16S rRNA gene sequencing. Microbial diversity was assessed using alpha diversity (Chao1 and Shannon indexes) and beta diversity (Bray-Curtis and Euclidean distance metrics). Principal coordinate analysis (PCoA) was used to visualize microbial variation among groups. Results Alpha diversity analysis showed that the microbial diversity in the Yexianggu group was higher than that in the other groups. Bray-Curtis and Euclidean metrics revealed significant differences among the microbial communities. Bacteroidetes and Firmicutes, which are key cellulose-degrading bacteria, were the dominant phyla in all groups. Synergistaceae was the most abundant family in the Menghai group, while Lachnospiraceae and Pirellulaceae were more abundant in the Yexianggu and Yuantongshan groups, respectively. Genus p-1008-a5-gut-group was more abundant in Yexianggu, and Prevotella was predominant in Menghai. Discussion These results indicate that habitat and husbandry practices significantly influence the gut microbiota of captive Asian elephants. The identification of bacterial species such as Lactobacillus fermentum, Clostridium neonatale, Enterococcus mundtii, Klebsiella huaxiensis, Corynebacterium nasicanis, and Streptococcus equinus highlights the potential role of specific microbes in maintaining host-microbial interactions. Promoting microbial diversity through improved captive conditions could enhance the health of these endangered animals.
Collapse
Affiliation(s)
- Yuhan Wang
- Yunnan Academy of Forestry and Grassland, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Yixuan Wang
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Jiuxuan Zhou
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Mingwei Bao
- Xishuangbanna Wild Elephant Valley, Kunming, China
| | - Taif Shah
- Kunming University of Science and Technology, Kunming, China
| | - Song Yang
- Southwest Forestry University, Kunming, China
| | - Jing Zheng
- Southwest Forestry University, Kunming, China
| | - Qian Li
- Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ruiling Yuan
- Yunnan Academy of Forestry and Grassland, Kunming, China
| |
Collapse
|
2
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
3
|
Martin LC, O'Hare MA, Ghielmetti G, Twesigomwe D, Kerr TJ, Gumbo R, Buss PE, Kitchin N, Hemmings SMJ, Miller MA, Goosen WJ. Short-read full-length 16S rRNA amplicon sequencing for characterisation of the respiratory bacteriome of captive and free-ranging African elephants (Loxodonta africana). Sci Rep 2024; 14:14768. [PMID: 38926469 PMCID: PMC11208578 DOI: 10.1038/s41598-024-65841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.
Collapse
Affiliation(s)
- Lauren C Martin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Michaela A O'Hare
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Giovanni Ghielmetti
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya J Kerr
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Rachiel Gumbo
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Peter E Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Natasha Kitchin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Michele A Miller
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Wynand J Goosen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
4
|
Bornbusch SL, Shinnerl HE, Gentry L, Keady MM, Glick V, Muletz-Wolz CR, Power ML. Local environment shapes milk microbiomes while evolutionary history constrains milk macronutrients in captive cercopithecine primates. Environ Microbiol 2024; 26:e16664. [PMID: 38830671 DOI: 10.1111/1462-2920.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Hannah E Shinnerl
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Lindsey Gentry
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Mia M Keady
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Virginia Glick
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Department of Immunology and Infectious Disease, Harvard University, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Michael L Power
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
5
|
Mikkelsen D, McGowan AM, Gibson JS, Lanyon JM, Horsman S, Seddon JM. Faecal bacterial communities differ amongst discrete foraging populations of dugongs along the east Australian coast. FEMS Microbiol Ecol 2024; 100:fiae051. [PMID: 38658192 PMCID: PMC11141782 DOI: 10.1093/femsec/fiae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Gut bacterial communities play a vital role in a host's digestion and fermentation of complex carbohydrates, absorption of nutrients, and energy harvest/storage. Dugongs are obligate seagrass grazers with an expanded hindgut and associated microbiome. Here, we characterised and compared the faecal bacterial communities of dugongs from genetically distinct populations along the east coast of Australia, between subtropical Moreton Bay and tropical Cleveland Bay. Amplicon sequencing of fresh dugong faecal samples (n=47) revealed Firmicutes (62%) dominating the faecal bacterial communities across all populations. Several bacterial genera (Bacteroides, Clostridium sensu stricto 1, Blautia and Polaribacter) were detected in samples from all locations, suggesting their importance in seagrass digestion. Principal coordinate analysis showed the three southern-most dugong populations having different faecal bacterial community compositions from northern populations. The relative abundances of the genera Clostridium sensu stricto 13 and dgA-11 gut group were higher, but Bacteroides was lower, in the southern dugong populations, compared to the northern populations, suggesting potential adaptive changes associated with location. This study contributes to our knowledge of the faecal bacterial communities of dugongs inhabiting Australian coastal waters. Future studies of diet selection in relation to seagrass availability throughout the dugong's range will help to advance our understanding of the roles that seagrass species may play in affecting the dugong's faecal bacterial community composition.
Collapse
Affiliation(s)
- Deirdre Mikkelsen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alexandra M McGowan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sara Horsman
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Jennifer M Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
6
|
Sun X, Sitters J, Ruytinx J, Wassen MJ, Olde Venterink H. Microbial community composition in the dung of five sympatric European herbivore species. Ecol Evol 2024; 14:e11071. [PMID: 38481755 PMCID: PMC10933625 DOI: 10.1002/ece3.11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dung microbiome is a complex system that is highly influenced by species and diet. This study characterized the dung bacterial and fungal communities of five herbivore species inhabiting the National Park Zuid-Kennemerland, the Netherlands. The five selected herbivore species were rabbit (Oryctolagus cuniculus L.), cow (Bos taurus L.), horse (Equus ferus caballus L.), fallow deer (Dama dama L.), and European bison (Bison bonasus L.). We explored the effects of distinct digestive physiology (ruminants vs. non-ruminants) and diverse dietary preferences on the microbial community composition of herbivore dung. Firmicutes and Bacteroidetes were dominant bacterial phyla in the dung of all five herbivore species, and Ascomycota was the predominant fungal phylum. Verrucomicrobiota and Mucoromycota were more present in horse dung and Proteobacteria were more abundant in rabbit dung than the three ruminant dung types. There were few significant differences in the microbial community structure among the three ruminant dung types. The alpha and beta diversity of dung microbial communities significantly differed between ruminants and non-ruminants, especially in bacterial communities. Based on MetaCyc pathways, we found that the primary functions of bacteria in herbivore dung were focused on biosynthesis, various super pathways, and degradation, with a few differences between ruminant and non-ruminant dung. FUNGuild analysis showed that horse dung had more saprotrophic fungi, while the fungi in fallow deer dung had more symbiotrophic properties, with the fungal functions of bison, cow, and rabbit dung somewhere in between. There was also a correlation between microbial community and nutrient composition of the substrate in herbivore dung. Understanding the dung microbial community composition of these herbivore species can enrich the database of mammalian gut microbiomes for studying the mechanisms of microbial community variation while preparing for exploring a new perspective to study the impact of herbivores on ecosystems through dung deposition.
Collapse
Affiliation(s)
- Xingzhao Sun
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
| | - Judith Sitters
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
- B‐WARE Research CentreNijmegenThe Netherlands
| | - Joske Ruytinx
- Research Groups Microbiology and Plant GeneticsVrije Universiteit BrusselBrusselsBelgium
| | - Martin J. Wassen
- Environmental Sciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
7
|
van Bergeijk DA, Augustijn HE, Elsayed SS, Willemse J, Carrión VJ, Du C, Urem M, Grigoreva LV, Cheprasov MY, Grigoriev S, Jansen H, Wintermans B, Budding AE, Spaink HP, Medema MH, van Wezel GP. Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth. Environ Microbiol 2024; 26:e16589. [PMID: 38356049 DOI: 10.1111/1462-2920.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.
Collapse
Affiliation(s)
- Doris A van Bergeijk
- Department of Microbiology, Immunology and Transplantation (Laboratory of Molecular Bacteriology), KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | | | - Joost Willemse
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor J Carrión
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbiology, University of Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Mia Urem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | - Bas Wintermans
- Department of Medical Microbiology, Adrz Hospital, Goes, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
8
|
Klinhom S, Sriwichaiin S, Kerdphoo S, Khonmee J, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota in captive Asian elephants (Elephas maximus) from infant to elderly. Sci Rep 2023; 13:23027. [PMID: 38155244 PMCID: PMC10754835 DOI: 10.1038/s41598-023-50429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Gut microbiota play an important role in the health and disease of Asian elephants, however, its characteristics at each stage of life have not been thoroughly investigated in maintaining and regulating health of elephants. This study, therefore, aimed to characterize the profiles of the gut microbiota of captive Asian elephants from infants to the elderly. Gut microbiota were identified by 16S rRNA sequencing from the feces of captive Asian elephants with varying age groups, including infant calves, suckling calves, weaned calves, subadult and adult elephants, and geriatric elephants. The diversity of the gut microbiota was lowest in infants, stable during adulthood, and slightly decreased in the geriatric period. The gut microbiota of the infant elephants was dominated by milk-fermenting taxa including genus Bifidobacterium of family Bifidobacteriaceae together with genus Akkermansia. The fiber-fermenting taxa such as Lachnospiraceae_NK3A20_group were found to be increased in suckling elephants in differential abundance analysis by Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). The gut microbiota profiles after weaning until the adult period has been uniform as indicated by no significant differences in beta diversity between groups. However, the composition of the gut microbiota was found to change again in geriatric elephants. Understanding of the composition of the gut microbiota of captive Asian elephants at various life stages could be beneficial for promoting good health throughout their lifespan, as well as ensuring the welfare of captive elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaruwan Khonmee
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
9
|
Tang L, Yan L, Jia H, Xiong Y, Ma X, Chu H, Sun Z, Wang L, Shalitanati M, Li K, Hu D, Zhang D. Gut microbial community structure and function of Przewalski's horses varied across reintroduced sites in China. Integr Zool 2023; 18:1027-1040. [PMID: 36606497 DOI: 10.1111/1749-4877.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Host-associated microbiota can significantly impact host fitness. Therefore, naturally occurring variations in microbiota may influence the health and persistence of their hosts. This finding is particularly important in reintroduced animals, as they typically experience habitat changes during translocations. However, little is known about how microbiomes are altered in response to conservation translocation. Here, we accessed the gut microbiome of Przewalski's horse (Equus przewalskii) populations in China from three nature reserves (i.e. Xinjiang Kalamaili Nature Reserve, KNR; Dunhuang Xihu National Nature Reserve, DXNNR; and Anxi Extreme-arid Desert Nature Reserve, AENR) using 16s rRNA gene and metagenome sequencing. The results showed that the microbial composition and function differed significantly across locations, while a subset of core taxa was consistently present in most of the samples. The abundance of genes encoding microbe-produced enzymes involved in the metabolism of carbohydrates, especially for glycoside hydrolases, was significantly higher in open-spaced KNR populations than in more confined AENR individuals. This study offers detailed and significant differential characters related to the microbial community and metabolic pathways in various reintroduced sites of Przewalski's horse, which might provide a basis for future microecological and conservation research on endangered reintroduced animals.
Collapse
Affiliation(s)
- Liping Tang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Xiong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinping Ma
- Xinjiang Mountain Ungulate Nature Reserve Management Center, Urumqi, China
| | - Hongjun Chu
- Institute of Forestry Ecology, Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Zhicheng Sun
- Administrative Bureau of Dunhuang Xihu National Nature Reserve, Dunhuang, China
| | - Liang Wang
- Administration of Gansu Anxi Extra-arid Desert National Nature Reserve, Guazhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mubalake Shalitanati
- Xinjiang Uygur Autonomous Region Wild Horse Breeding Research Center, Urumqi, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
11
|
Thorel M, Obregon D, Mulot B, Maitre A, Mateos-Hernandez L, Moalic PY, Wu-Chuang A, Cabezas-Cruz A, Leclerc A. Conserved core microbiota in managed and free-ranging Loxodonta africana elephants. Front Microbiol 2023; 14:1247719. [PMID: 37860133 PMCID: PMC10582353 DOI: 10.3389/fmicb.2023.1247719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and β diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.
Collapse
Affiliation(s)
- Milan Thorel
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Baptiste Mulot
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | |
Collapse
|
12
|
Lapid R, Motro Y, Craddock H, Khalfin B, King R, Bar-Gal GK, Moran-Gilad J. Fecal microbiota of the synanthropic golden jackal (Canis aureus). Anim Microbiome 2023; 5:37. [PMID: 37542305 PMCID: PMC10403885 DOI: 10.1186/s42523-023-00259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.
Collapse
Affiliation(s)
- Roi Lapid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Hillary Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Boris Khalfin
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Roni King
- Science and Conservation Division, Israel Nature and Parks Authority, 3 Am Ve'Olamo St., 95463, Jerusalem, Israel
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Lan LY, Hong QX, Gao SM, Li Q, You YY, Chen W, Fan PF. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: Implications for gibbon health. Am J Primatol 2023; 85:e23468. [PMID: 36691713 DOI: 10.1002/ajp.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Xuan Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Yan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Feng X, Hua R, Zhang W, Liu Y, Luo C, Li T, Chen X, Zhu H, Wang Y, Lu Y. Comparison of the gut microbiome and resistome in captive African and Asian elephants on the same diet. Front Vet Sci 2023; 10:986382. [PMID: 36875997 PMCID: PMC9978182 DOI: 10.3389/fvets.2023.986382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Elephants are endangered species and threatened with extinction. They are monogastric herbivorous, hindgut fermenters and their digestive strategy requires them to consume large amounts of low quality forage. The gut microbiome is important to their metabolism, immune regulation, and ecological adaptation. Our study investigated the structure and function of the gut microbiota as well as the antibiotic resistance genes (ARGs) in captive African and Asian elephants on the same diet. Results showed that captive African and Asian elephants had distinct gut bacterial composition. MetaStats analysis showed that the relative abundance of Spirochaetes (FDR = 0.00) and Verrucomicrobia (FDR = 0.01) at the phylum level as well as Spirochaetaceae (FDR = 0.01) and Akkermansiaceae (FDR = 0.02) at the family level varied between captive African and Asian elephants. Among the top ten functional subcategories at level 2 (57 seed pathway) of Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the relative gene abundance of cellular community-prokaryotes, membrane transport, and carbohydrate metabolism in African elephants were significantly lower than those in Asian elephants (0.98 vs. 1.03%, FDR = 0.04; 1.25 vs. 1.43%, FDR = 0.03; 3.39 vs. 3.63%; FDR = 0.02). Among the top ten functional subcategories at level 2 (CAZy family) of CAZy database, MetaStats analysis showed that African elephants had higher relative gene abundance of Glycoside Hydrolases family 28 (GH 28) compared to Asian elephants (0.10 vs. 0.08%, FDR = 0.03). Regarding the antibiotic resistance genes carried by gut microbes, MetaStats analysis showed that African elephants had significantly higher relative abundance of vanO (FDR = 0.00), tetQ (FDR = 0.04), and efrA (FDR = 0.04) than Asian elephants encoding resistance for glycopeptide, tetracycline, and macrolide/rifamycin/fluoroquinolone antibiotic, respectively. In conclusion, captive African and Asian elephants on the same diet have distinct gut microbial communities. Our findings established the ground work for future research on improving gut health of captive elephants.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rong Hua
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wanying Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuhang Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tonghao Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Youcong Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|
15
|
Tan M, Caro Y, Lebeau J, Shum-Cheong-Sing A, François JM, Regnier T, Petit T. Screening for Volatile α-Unsaturated Ester-Producing Yeasts from the Feces of Wild Animals in South Africa. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121999. [PMID: 36556363 PMCID: PMC9782132 DOI: 10.3390/life12121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
α-unsaturated esters are fruity-aromatic compounds which are largely spread in the volatilome of many different fruits, but they are rarely found in the volatilome of yeasts. The yeast S. suaveolens has been recently shown to produce relatively high amounts of α-unsaturated esters and it appears to be an interesting model for the production of these compounds. This study aimed to isolate new α-unsaturated ester-producing yeasts by focusing on strains displaying a similar metabolism to S. suaveolens. While the production of α-unsaturated esters by S. suaveolens is believed to be closely related to its ability to grow on media containing branched-chain amino acids (isoleucine, leucine and valine) as the sole carbon source (ILV+ phenotype), in this study, an original screening method was developed that selects for yeast strains displaying ILV+ phenotypes and is able to produce α-unsaturated esters. Among the 119 yeast strains isolated from the feces of 42 different South African wild animal species, 43 isolates showed the ILV+ phenotype, among which 12 strains were able to produce α-unsaturated esters. Two interesting α-unsaturated esters were detected in two freshly isolated strains, both identified as Galactomyces candidus. These new esters were detected neither in the volatilome of the reference strain S. suaveolens, nor in any other yeast species previously studied for their aroma production. This work demonstrated the efficiency of an original method to rapidly screen for α-unsaturated ester-producing yeasts. In addition, it demonstrated that wild animal feces are interesting resources to isolate novel strains producing compounds with original aromas.
Collapse
Affiliation(s)
- Mélissa Tan
- Laboratoire de Chimie et Biotechnologies des Produits Naturels, Université de la Réunion, 97400 Reunion, France
- Département Hygiène, Sécurité et Environnement (HSE), IUT de la Réunion, 97410 Reunion, France
| | - Yanis Caro
- Laboratoire de Chimie et Biotechnologies des Produits Naturels, Université de la Réunion, 97400 Reunion, France
- Département Hygiène, Sécurité et Environnement (HSE), IUT de la Réunion, 97410 Reunion, France
| | - Juliana Lebeau
- Laboratoire de Chimie et Biotechnologies des Produits Naturels, Université de la Réunion, 97400 Reunion, France
| | - Alain Shum-Cheong-Sing
- Laboratoire de Chimie et Biotechnologies des Produits Naturels, Université de la Réunion, 97400 Reunion, France
| | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), INSA Toulouse, 31400 Toulouse, France
| | - Thierry Regnier
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Thomas Petit
- Laboratoire de Chimie et Biotechnologies des Produits Naturels, Université de la Réunion, 97400 Reunion, France
- Département Hygiène, Sécurité et Environnement (HSE), IUT de la Réunion, 97410 Reunion, France
- Correspondence:
| |
Collapse
|
16
|
You Z, Deng J, Liu J, Fu J, Xiong H, Luo W, Xiong J. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer ( Cervus albirostris). PeerJ 2022; 10:e13753. [PMID: 35873913 PMCID: PMC9302429 DOI: 10.7717/peerj.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
The gut microbiota has key physiological functions in host adaptation, although little is known about the seasonal changes in the composition and diversity of the gut microbiota in deer. In this study, seasonal variations (grassy and withering season) in the gut microbiota of white-lipped deer (Cervus albirostris), which lives in alpine environments, were explored through 16S rRNA high-throughput sequencing based on sixteen fecal samples collected from Gansu Qilian Mountain National Nature Reserve in China. At the phylum level, Firmicutes, Bacteroidota, and Actinobacteriota dominated the grassy season, while Firmicutes, Proteobacteria, and Actinobacteriota dominated the withering season. At the genus level, Carnobacterium dominated the grassy season, while Arthrobacter and Acinetobacter dominated the withering season. Alpha diversity results (Shannon: P = 0.01, ACE: P = 0.00, Chao1: P = 0.00) indicated that there was a difference in the diversity and richness of the gut microbiota between the two seasons, with higher diversity in the grassy season than in the withering season. Beta diversity results further indicated that there was a significant difference in the community structure between the two seasons (P = 0.001). In summary, the composition, diversity, and community structure of the gut microbiota showed significant seasonal variations, which could be explained by variations in the seasonal food availability, composition, diversity, and nutrition due to phenological alternations. The results of this study indicate that the gut microbiota can adapt to changes in the environment and provide the scientific basis for health assessment of white-lipped deer.
Collapse
Affiliation(s)
- Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jing Deng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jialin Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Junhua Fu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Huan Xiong
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Jianli Xiong
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| |
Collapse
|
17
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
18
|
Liu Y, Li Y, Li J, Zhou Q, Li X. Gut Microbiome Analyses of Wild Migratory Freshwater Fish (Megalobrama terminalis) Through Geographic Isolation. Front Microbiol 2022; 13:858454. [PMID: 35464925 PMCID: PMC9026196 DOI: 10.3389/fmicb.2022.858454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/11/2023] Open
Abstract
Gut microbiome is considered as a critical role in host digestion and metabolic homeostasis. Nevertheless, the lack of knowledge concerning how the host-associated gut microbiome underpins the host metabolic capability and regulates digestive functions hinders the exploration of gut microbiome variation in diverse geographic population. In the present study, we selected the black Amur bream (Megalobrama terminalis) that inhabits southern China drainage with multiple geographic populations and relatively high digestive plasticity as a candidate to explore the potential effects of genetic variation and environmental discrepancy on fish gut microbiome. Here, high-throughput 16S rRNA gene sequencing was utilized to decipher the distinct composition and diversity of the entire gut microbiota in wild M. terminalis distributed throughout southern China. The results indicated that mainland (MY and XR) populations exhibited a higher alpha diversity than that of the Hainan Island (WS) population. Moreover, a clear taxon shift influenced by water temperature, salinity (SA), and gonadosomatic index (GSI) in the course of seasonal variation was observed in the gut bacterial community. Furthermore, geographic isolation and seasonal variation significantly impacted amino acid, lipid, and carbohydrate metabolism of the fish gut microbiome. Specifically, each geographic population that displayed its own unique regulation pattern of gut microbiome was recognized as a specific digestion strategy to enhance adaptive capability in the resident environment. Consequently, this discovery suggested that long-term geographic isolation leads to variant environmental factors and genotypes, which made a synergetic effect on the diversity of the gut microbiome in wild M. terminalis. In addition, the findings provide effective information for further exploring ecological fitness countermeasures in the fish population.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Jie Li
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
19
|
Keady MM, Prado N, Lim HC, Brown J, Paris S, Muletz-Wolz CR. Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants. Anim Microbiome 2021; 3:85. [PMID: 34930501 PMCID: PMC8686393 DOI: 10.1186/s42523-021-00146-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background The gut microbiome is important to immune health, metabolism, and hormone regulation. Understanding host–microbiome relationships in captive animals may lead to mediating long term health issues common in captive animals. For instance, zoo managed African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) experience low reproductive rates, high body condition, and gastrointestinal (GI) issues. We leveraged an extensive collection of fecal samples and health records from the Elephant Welfare Study conducted across North American zoos in 2012 to examine the link between gut microbiota and clinical health issues, reproductive hormones, and metabolic hormones in captive elephants. We quantified gut microbiomes of 69 African and 48 Asian elephants from across 50 zoos using Illumina sequencing of the 16S rRNA bacterial gene.
Results Elephant species differed in microbiome structure, with African elephants having lower bacterial richness and dissimilar bacterial composition from Asian elephants. In both species, bacterial composition was strongly influenced by zoo facility. Bacterial richness was lower in African elephants with recent GI issues, and richness was positively correlated with metabolic hormone total triiodothyronine (total T3) in Asian elephants. We found species-specific associations between gut microbiome composition and hormones: Asian elephant gut microbiome composition was linked to total T3 and free thyroxine (free T4), while fecal glucocorticoid metabolites (FGM) were linked to African elephant gut microbiome composition. We identified many relationships between bacterial relative abundances and hormone concentrations, including Prevotella spp., Treponema spp., and Akkermansia spp.
Conclusions We present a comprehensive assessment of relationships between the gut microbiome, host species, environment, clinical health issues, and the endocrine system in captive elephants. Our results highlight the combined significance of host species-specific regulation and environmental effects on the gut microbiome between two elephant species and across 50 zoo facilities. We provide evidence of clinical health issues, reproductive hormones, and metabolic hormones associated with the gut microbiome structure of captive elephants. Our findings establish the groundwork for future studies to investigate bacterial function or develop tools (e.g., prebiotics, probiotics, dietary manipulations) suitable for conservation and zoo management. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00146-9.
Collapse
Affiliation(s)
- Mia M Keady
- School for Systems Biology, George Mason University, Fairfax, VA, USA. .,Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology Institute, Washington, DC, USA.
| | - Natalia Prado
- School for Systems Biology, George Mason University, Fairfax, VA, USA. .,Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology Institute, Washington, DC, USA. .,Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, USA. .,Department of Biology, Adelphi University, Garden City, NY, USA.
| | - Haw Chuan Lim
- School for Systems Biology, George Mason University, Fairfax, VA, USA.,Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Janine Brown
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Steve Paris
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology Institute, Washington, DC, USA.
| |
Collapse
|
20
|
Schulte BA, LaDue CA. The Chemical Ecology of Elephants: 21st Century Additions to Our Understanding and Future Outlooks. Animals (Basel) 2021; 11:2860. [PMID: 34679881 PMCID: PMC8532676 DOI: 10.3390/ani11102860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Chemical signals are the oldest and most ubiquitous means of mediating intra- and interspecific interactions. The three extant species of elephants, the Asian elephant and the two African species, savanna and forest share sociobiological patterns in which chemical signals play a vital role. Elephants emit secretions and excretions and display behaviors that reveal the importance of odors in their interactions. In this review, we begin with a brief introduction of research in elephant chemical ecology leading up to the 21st century, and then we summarize the body of work that has built upon it and occurred in the last c. 20 years. The 21st century has expanded our understanding on elephant chemical ecology, revealing their use of odors to detect potential threats and make dietary choices. Furthermore, complementary in situ and ex situ studies have allowed the careful observations of captive elephants to be extended to fieldwork involving their wild counterparts. While important advances have been made in the 21st century, further work should investigate the roles of chemical signaling in elephants and how these signals interact with other sensory modalities. All three elephant species are threatened with extinction, and we suggest that chemical ecology can be applied for targeted conservation efforts.
Collapse
Affiliation(s)
- Bruce A. Schulte
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Chase A. LaDue
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
21
|
Montes-Carreto LM, Aguirre-Noyola JL, Solís-García IA, Ortega J, Martinez-Romero E, Guerrero JA. Diverse methanogens, bacteria and tannase genes in the feces of the endangered volcano rabbit ( Romerolagus diazi). PeerJ 2021; 9:e11942. [PMID: 34458021 PMCID: PMC8378336 DOI: 10.7717/peerj.11942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background The volcano rabbit is the smallest lagomorph in Mexico, it is monotypic and endemic to the Trans-Mexican Volcanic Belt. It is classified as endangered by Mexican legislation and as critically endangered by the IUCN, in the Red List. Romerolagus diazi consumes large amounts of grasses, seedlings, shrubs, and trees. Pines and oaks contain tannins that can be toxic to the organisms which consume them. The volcano rabbit microbiota may be rich in bacteria capable of degrading fiber and phenolic compounds. Methods We obtained the fecal microbiome of three adults and one young rabbit collected in Coajomulco, Morelos, Mexico. Taxonomic assignments and gene annotation revealed the possible roles of different bacteria in the rabbit gut. We searched for sequences encoding tannase enzymes and enzymes associated with digestion of plant fibers such as cellulose and hemicellulose. Results The most representative phyla within the Bacteria domain were: Proteobacteria, Firmicutes and Actinobacteria for the young rabbit sample (S1) and adult rabbit sample (S2), which was the only sample not confirmed by sequencing to correspond to the volcano rabbit. Firmicutes, Actinobacteria and Cyanobacteria were found in adult rabbit samples S3 and S4. The most abundant phylum within the Archaea domain was Euryarchaeota. The most abundant genera of the Bacteria domain were Lachnoclostridium (Firmicutes) and Acinetobacter (Proteobacteria), while Methanosarcina predominated from the Archaea. In addition, the potential functions of metagenomic sequences were identified, which include carbohydrate and amino acid metabolism. We obtained genes encoding enzymes for plant fiber degradation such as endo 1,4 β-xylanases, arabinofuranosidases, endoglucanases and β-glucosidases. We also found 18 bacterial tannase sequences.
Collapse
Affiliation(s)
- Leslie M Montes-Carreto
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Itzel A Solís-García
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | | | - José Antonio Guerrero
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
22
|
Cucina A, Cunsolo V, Di Francesco A, Saletti R, Zilberstein G, Zilberstein S, Tikhonov A, Bublichenko AG, Righetti PG, Foti S. Meta-proteomic analysis of the Shandrin mammoth by EVA technology and high-resolution mass spectrometry: what is its gut microbiota telling us? Amino Acids 2021; 53:1507-1521. [PMID: 34453585 PMCID: PMC8519927 DOI: 10.1007/s00726-021-03061-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
During the last decade, paleoproteomics allowed us to open a direct window into the biological past, improving our understanding of the phylogenetic relationships of extant and extinct species, past human diseases, and reconstruction of the human diet. In particular, meta-proteomic studies, mainly carried out on ancient human dental calculus, provided insights into past oral microbial communities and ancient diets. On the contrary, very few investigations regard the analysis of ancient gut microbiota, which may enable a greater understanding of how microorganisms and their hosts have co-evolved and spread under the influence of changing diet practices and habitat. In this respect, this paper reports the results of the first-ever meta-proteomic analysis carried out on a gut tissue sample some 40,000 years old. Proteins were extracted by applying EVA (ethylene–vinyl acetate) films to the surface of the gut sample of a woolly mammoth (Mammuthus primigenus), discovered in 1972 close to the Shandrin River (Yakutia, Russia), and then investigated via a shotgun MS-based approach. Proteomic and peptidomic analysis allowed in-depth exploration of its meta-proteome composition. The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the “original” endogenous peptides from contaminant ones. Overall, the results of the meta-proteomic analysis here reported agreeing with the previous paleobotanical studies and with the reconstructed habitat of the Shandrin mammoth and provided insight into its diet. The data have been deposited to the ProteomeXchange with identifier < PXD025518 > .
Collapse
Affiliation(s)
- Annamaria Cucina
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rosaria Saletti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | - Alexei Tikhonov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab.1, Saint-Petersburg, 199034, Russia
| | - Andrey G Bublichenko
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab.1, Saint-Petersburg, 199034, Russia
| | - Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering ''Giulio Natta'', Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Salvatore Foti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
23
|
Rojas CA, Ramírez-Barahona S, Holekamp KE, Theis KR. Host phylogeny and host ecology structure the mammalian gut microbiota at different taxonomic scales. Anim Microbiome 2021; 3:33. [PMID: 33892813 PMCID: PMC8063394 DOI: 10.1186/s42523-021-00094-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics from central Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified by host ecology (i.e., diet, geography), especially among closely related host species.
Collapse
Affiliation(s)
- Connie A. Rojas
- Department of Integrative Biology, Michigan State University, East Lansing, MI USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
| | - Santiago Ramírez-Barahona
- Departament of Botany, Institute of Biology, Universidad Nacional Autónoma de México, Mexico City, MX Mexico
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
| | - Kevin R. Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|