1
|
Sturm AB, Eckert RJ, Carreiro AM, Klein AM, Studivan MS, Dodge Farelli D, Simões N, González‐Díaz P, González Méndez J, Voss JD. Does depth divide? Variable genetic connectivity patterns among shallow and mesophotic Montastraea cavernosa coral populations across the Gulf of Mexico and western Caribbean. Ecol Evol 2023; 13:e10622. [PMID: 38020681 PMCID: PMC10631546 DOI: 10.1002/ece3.10622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Despite general declines in coral reef ecosystems in the tropical western Atlantic, some reefs, including mesophotic reefs (30-150 m), are hypothesized to function as coral refugia due to their relative isolation from anthropogenic stressors. Understanding the connectivity dynamics among these putative refugia and more degraded reefs is critical to develop effective management strategies that promote coral metapopulation persistence and recovery. This study presents a geographically broad assessment of shallow (<30 m) and mesophotic (>30 m) connectivity dynamics of the depth-generalist coral species Montastraea cavernosa. Over 750 coral genets were collected across the Northwest and Southern Gulf of Mexico, Florida, Cuba, and Belize, and ~5000 SNP loci were generated to quantify high-resolution genetic structure and connectivity among these populations. Generally, shallow and mesophotic populations demonstrated higher connectivity to distant populations within the same depth zone than to adjacent populations across depth zones. However, exceptions to this pattern include the Northwest Gulf of Mexico and the Florida Keys which exhibited relatively high vertical genetic connectivity. Furthermore, estimates of recent gene flow emphasize that mesophotic M. cavernosa populations are not significant sources for their local shallow counterparts, except for the Northwest Gulf of Mexico populations. Location-based differences in vertical connectivity are likely a result of diverse oceanographic and environmental conditions that may drive variation in gene flow and depth-dependent selection. These results highlight the need to evaluate connectivity dynamics and refugia potential of mesophotic coral species on a population-by-population basis and to identify stepping-stone populations that warrant incorporation in future international management approaches.
Collapse
Affiliation(s)
- Alexis B. Sturm
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
| | - Ryan J. Eckert
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
| | - Ashley M. Carreiro
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
| | - Allison M. Klein
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
| | - Michael S. Studivan
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Science, Cooperative Institute for Marine and Atmospheric Studies (CIMAS)University of MiamiMiamiFloridaUSA
- Atlantic Oceanographic and Meteorological Laboratories (AOML)MiamiFloridaUSA
| | | | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigación–Sisal, Facultad de CienciasUniversidad Nacional Autonoma de MéxicoSisalYucatánMexico
- International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico StudiesTexas A&M University‐Corpus ChristiCorpus ChristiTexasUSA
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios NacionalesCONACYTSisalMexico
| | | | | | - Joshua D. Voss
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFloridaUSA
| |
Collapse
|
2
|
Palumbi SR, Walker NS, Hanson E, Armstrong K, Lippert M, Cornwell B, Nestor V, Golbuu Y. Small-scale genetic structure of coral populations in Palau based on whole mitochondrial genomes: Implications for future coral resilience. Evol Appl 2023; 16:518-529. [PMID: 36793699 PMCID: PMC9923468 DOI: 10.1111/eva.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
The ability of local populations to adapt to future climate conditions is facilitated by a balance between short range dispersal allowing local buildup of adaptively beneficial alleles, and longer dispersal moving these alleles throughout the species range. Reef building corals have relatively low dispersal larvae, but most population genetic studies show differentiation only over 100s of km. Here, we report full mitochondrial genome sequences from 284 tabletop corals (Acropora hyacinthus) from 39 patch reefs in Palau, and show two signals of genetic structure across reef scales from 1 to 55 km. First, divergent mitochondrial DNA haplotypes exist in different proportions from reef to reef, causing PhiST values of 0.02 (p = 0.02). Second, closely related sequences of mitochondrial Haplogroups are more likely to be co-located on the same reefs than expected by chance alone. We also compared these sequences to prior data on 155 colonies from American Samoa. In these comparisons, many Haplogroups in Palau were disproportionately represented or absent in American Samoa, and inter-regional PhiST = 0.259. However, we saw three instances of identical mitochondrial genomes between locations. Together, these data sets suggest two features of coral dispersal revealed by occurrence patterns in highly similar mitochondrial genomes. First, the Palau-American Samoa data suggest that long distance dispersal in corals is rare, as expected, but that it is common enough to deliver identical mitochondrial genomes across the Pacific. Second, higher than expected co-occurrence of Haplogroups on the same Palau reefs suggests greater retention of coral larvae on local reefs than predicted by many current oceanographic models of larval movement. Increased attention to local scales of coral genetic structure, dispersal, and selection may help increase the accuracy of models of future adaptation of corals and of assisted migration as a reef resilience intervention.
Collapse
Affiliation(s)
- Stephen R. Palumbi
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaii Institute of Marine Biology, University of HawaiiHonoluluHawaiiUSA
| | - Erik Hanson
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Katrina Armstrong
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Brendan Cornwell
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | | |
Collapse
|
3
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
4
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Schlecker L, Page C, Matz M, Wright RM. Mechanisms and potential immune tradeoffs of accelerated coral growth induced by microfragmentation. PeerJ 2022; 10:e13158. [PMID: 35368334 PMCID: PMC8973463 DOI: 10.7717/peerj.13158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Microfragmentation is the act of cutting corals into small pieces (~1 cm2) to accelerate the growth rates of corals relative to growth rates observed when maintaining larger-sized fragments. This rapid tissue and skeletal expansion technique offers great potential for supporting reef restoration, yet the biological processes and tradeoffs involved in microfragmentation-mediated accelerated growth are not well understood. Here we compared growth rates across a range of successively smaller fragment sizes in multiple genets of reef-building corals, Orbicella faveolata and Montastraea cavernosa. Our results confirm prior findings that smaller initial sizes confer accelerated growth after four months of recovery in a raceway. O. faveolata transcript levels associated with growth rate include genes encoding carbonic anhydrase and glutamic acid-rich proteins, which have been previously implicated in coral biomineralization, as well as a number of unannotated transcripts that warrant further characterization. Innate immunity enzyme activity assays and gene expression results suggest a potential tradeoff between growth rate after microfragmentation and immune investment. Microfragmentation-based restoration practices have had great success on Caribbean reefs, despite widespread mortality among wild corals due to infectious diseases. Future studies should continue to examine potential immune tradeoffs throughout the microfragmentation recovery period that may affect growout survival and disease transmission after outplanting.
Collapse
Affiliation(s)
| | | | - Mikhail Matz
- University of Texas at Austin, Austin, Texas, United States
| | - Rachel M. Wright
- Smith College, Northampton, Massachusetts, United States
- University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
6
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
7
|
Population genetic structure of the great star coral, Montastraea cavernosa, across the Cuban archipelago with comparisons between microsatellite and SNP markers. Sci Rep 2020; 10:15432. [PMID: 32963271 PMCID: PMC7508986 DOI: 10.1038/s41598-020-72112-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
Coral reef habitats surrounding Cuba include relatively healthy, well-developed shallow and mesophotic (30–150 m) scleractinian communities at the cross-currents of the Tropical Western Atlantic (TWA). However, Cuba’s coral communities are not immune to the declines observed throughout the TWA, and there is limited information available regarding genetic connectivity, diversity, and structure among these populations. This represents an immense gap in our understanding of coral ecology and population dynamics at both local and regional scales. To address this gap, we evaluated the population genetic structure of the coral Montastraea cavernosa across eight reef sites surrounding Cuba. Colonies were genotyped using nine microsatellite markers and > 9,000 single nucleotide polymorphism (SNP) markers generated using the 2bRAD approach to assess fine-scale genetic structure across these sites. Both the microsatellite and SNP analyses identified patterns of genetic differentiation among sample populations. While the microsatellite analyses did not identify significant genetic structure across the seven shallow M. cavernosa sampling sites, the SNP analyses revealed significant pairwise population differentiation, suggesting that differentiation is greater between eastern and western sites. This study provides insight into methodological differences between microsatellite and SNP markers including potential trade-offs between marker-specific biases, sample size, sequencing costs, and the ability to resolve subtle patterns of population genetic structure. Furthermore, this study suggests that locations in western Cuba may play important roles in this species’ regional metapopulation dynamics and therefore may merit incorporation into developing international management efforts in addition to the local management the sites receive.
Collapse
|