1
|
Prunier JG, Poesy C, Dubut V, Veyssière C, Loot G, Poulet N, Blanchet S. Quantifying the individual impact of artificial barriers in freshwaters: A standardized and absolute genetic index of fragmentation. Evol Appl 2020; 13:2566-2581. [PMID: 33294009 PMCID: PMC7691472 DOI: 10.1111/eva.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
Fragmentation by artificial barriers is an important threat to freshwater biodiversity. Mitigating the negative aftermaths of fragmentation is of crucial importance, and it is now essential for environmental managers to benefit from a precise estimate of the individual impact of weirs and dams on river connectivity. Although the indirect monitoring of fragmentation using molecular data constitutes a promising approach, it is plagued with several constraints preventing a standardized quantification of barrier effects. Indeed, observed levels of genetic differentiation GD depend on both the age of the obstacle and the effective size of the populations it separates, making comparisons of the actual barrier effect of different obstacles difficult. Here, we developed a standardized genetic index of fragmentation (F INDEX), allowing an absolute and independent assessment of the individual effects of obstacles on connectivity. The F INDEX is the standardized ratio between the observed GD between pairs of populations located on either side of an obstacle and the GD expected if this obstacle completely prevented gene flow. The expected GD is calculated from simulations taking into account two parameters: the number of generations since barrier creation and the expected heterozygosity of the populations, a proxy for effective population size. Using both simulated and empirical datasets, we explored the validity and the limits of the F INDEX. We demonstrated that it allows quantifying effects of fragmentation only from a few generations after barrier creation and provides valid comparisons among obstacles of different ages and populations (or species) of different effective sizes. The F INDEX requires a minimum amount of fieldwork and genotypic data and solves some of the difficulties inherent to the study of artificial fragmentation in rivers and potentially in other ecosystems. This makes the F INDEX promising to support the management of freshwater species affected by barriers, notably for planning and evaluating restoration programs.
Collapse
Affiliation(s)
- Jérôme G. Prunier
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier (UPS)UMR 5321Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Camille Poesy
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier (UPS)UMR 5321Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
| | - Vincent Dubut
- CNRSIRDAvignon UniversitéIMBEAix Marseille UnivMarseille UniversitéFrance
| | - Charlotte Veyssière
- CNRSUPSUMR 5174 EDB (Laboratoire Évolution & Diversité Biologique)École Nationale de Formation Agronomique (ENFA)Toulouse Cedex 4France
| | - Géraldine Loot
- CNRSUPSUMR 5174 EDB (Laboratoire Évolution & Diversité Biologique)École Nationale de Formation Agronomique (ENFA)Toulouse Cedex 4France
| | - Nicolas Poulet
- DRAS, Pôle R&D écohydraulique OFBIMFT‐PPRIMEOffice Français de la BiodiversitéToulouseFrance
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier (UPS)UMR 5321Station d’Ecologie Théorique et ExpérimentaleMoulisFrance
- CNRSUPSUMR 5174 EDB (Laboratoire Évolution & Diversité Biologique)École Nationale de Formation Agronomique (ENFA)Toulouse Cedex 4France
| |
Collapse
|
2
|
Blanchet S, Prunier JG, Paz‐Vinas I, Saint‐Pé K, Rey O, Raffard A, Mathieu‐Bégné E, Loot G, Fourtune L, Dubut V. A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks. Evol Appl 2020; 13:1195-1213. [PMID: 32684955 PMCID: PMC7359825 DOI: 10.1111/eva.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Rivers are fascinating ecosystems in which the eco-evolutionary dynamics of organisms are constrained by particular features, and biologists have developed a wealth of knowledge about freshwater biodiversity patterns. Over the last 10 years, our group used a holistic approach to contribute to this knowledge by focusing on the causes and consequences of intraspecific diversity in rivers. We conducted empirical works on temperate permanent rivers from southern France, and we broadened the scope of our findings using experiments, meta-analyses, and simulations. We demonstrated that intraspecific (genetic) diversity follows a spatial pattern (downstream increase in diversity) that is repeatable across taxa (from plants to vertebrates) and river systems. This pattern can result from interactive processes that we teased apart using appropriate simulation approaches. We further experimentally showed that intraspecific diversity matters for the functioning of river ecosystems. It indeed affects not only community dynamics, but also key ecosystem functions such as litter degradation. This means that losing intraspecific diversity in rivers can yield major ecological effects. Our work on the impact of multiple human stressors on intraspecific diversity revealed that-in the studied river systems-stocking of domestic (fish) strains strongly and consistently alters natural spatial patterns of diversity. It also highlighted the need for specific analytical tools to tease apart spurious from actual relationships in the wild. Finally, we developed original conservation strategies at the basin scale based on the systematic conservation planning framework that appeared pertinent for preserving intraspecific diversity in rivers. We identified several important research avenues that should further facilitate our understanding of patterns of local adaptation in rivers, the identification of processes sustaining intraspecific biodiversity-ecosystem function relationships, and the setting of reliable conservation plans.
Collapse
Affiliation(s)
- Simon Blanchet
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Jérôme G. Prunier
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Ivan Paz‐Vinas
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- Laboratoire Ecologie Fonctionnelle et EnvironnementUniversité de ToulouseUPSCNRSINPUMR‐5245 ECOLABToulouseFrance
| | - Keoni Saint‐Pé
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Olivier Rey
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Allan Raffard
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Eglantine Mathieu‐Bégné
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Géraldine Loot
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Lisa Fourtune
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- PEIRENEEA 7500Université de LimogesLimogesFrance
| | - Vincent Dubut
- Aix Marseille UniversitéCNRSIRDAvignon UniversitéIMBEMarseilleFrance
| |
Collapse
|
3
|
|
4
|
Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G, Blanchet S. Systematic conservation planning for intraspecific genetic diversity. Proc Biol Sci 2019; 285:rspb.2017.2746. [PMID: 29695444 DOI: 10.1098/rspb.2017.2746] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/04/2018] [Indexed: 11/12/2022] Open
Abstract
Intraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne river basin, France) to determine hot- and coldspots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness (PA), classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.
Collapse
Affiliation(s)
- Ivan Paz-Vinas
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France .,Aix-Marseille Université, CNRS, IRD, Avignon Université; UMR-7263 IMBE, 3 place Victor Hugo, 13331 Marseille cedex 3, France.,CNRS, ENTPE; UMR-5023 LEHNA, Université de Lyon, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Géraldine Loot
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,Institut Universitaire de France, Paris, France
| | - Virgilio Hermoso
- Centre Tecnologic Forestal de Catalunya, Crta. Sant Llorenc de Monunys, Km 2, 25280 Solsona, Lleida, Spain
| | - Charlotte Veyssière
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France
| | - Nicolas Poulet
- French Biodiversity Agency, pôle écohydraulique, Allée du professeur Camille Soula, 31400 Toulouse, France
| | - Gaël Grenouillet
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,Institut Universitaire de France, Paris, France
| | - Simon Blanchet
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,CNRS, Station d'Écologie Théorique et Expérimentale, UMR-5321, 09200 Moulis, France
| |
Collapse
|
5
|
Guillerault N, Loot G, Blanchet S, Santoul F. Catch-related and genetic outcome of adult northern pike Esox lucius stocking in a large river system. JOURNAL OF FISH BIOLOGY 2018; 93:1107-1112. [PMID: 30281147 DOI: 10.1111/jfb.13826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Genetic introgression from stocked adult northern pike Esox lucius to a wild self-recruiting population was detected in a large river system and some stocked E. lucius survived up to two spawning seasons and dispersed over several kilometres in the river. Moreover, the catch rate of stocked E. lucius by anglers was low (9.6%), hence suggesting that the efficiency of stocking activity is questionable.
Collapse
Affiliation(s)
- Nicolas Guillerault
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- Station d'Ecologie Expérimentale et Théorique (SETE), CNRS, UPS, UMR 5321, Moulis, France
| | - Géraldine Loot
- Laboratoire Évolution et Diversité Biologique (EDB), CNRS, UPS, ENFA, UMR 5174, Toulouse, France
| | - Simon Blanchet
- Station d'Ecologie Expérimentale et Théorique (SETE), CNRS, UPS, UMR 5321, Moulis, France
| | - Frederic Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
6
|
Milligan BG, Archer FI, Ferchaud A, Hand BK, Kierepka EM, Waples RS. Disentangling genetic structure for genetic monitoring of complex populations. Evol Appl 2018; 11:1149-1161. [PMID: 30026803 PMCID: PMC6050185 DOI: 10.1111/eva.12622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 12/25/2022] Open
Abstract
Genetic monitoring estimates temporal changes in population parameters from molecular marker information. Most populations are complex in structure and change through time by expanding or contracting their geographic range, becoming fragmented or coalescing, or increasing or decreasing density. Traditional approaches to genetic monitoring rely on quantifying temporal shifts of specific population metrics-heterozygosity, numbers of alleles, effective population size-or measures of geographic differentiation such as FST. However, the accuracy and precision of the results can be heavily influenced by the type of genetic marker used and how closely they adhere to analytical assumptions. Care must be taken to ensure that inferences reflect actual population processes rather than changing molecular techniques or incorrect assumptions of an underlying model of population structure. In many species of conservation concern, true population structure is unknown, or structure might shift over time. In these cases, metrics based on inappropriate assumptions of population structure may not provide quality information regarding the monitored population. Thus, we need an inference model that decouples the complex elements that define population structure from estimation of population parameters of interest and reveals, rather than assumes, fine details of population structure. Encompassing a broad range of possible population structures would enable comparable inferences across biological systems, even in the face of range expansion or contraction, fragmentation, or changes in density. Currently, the best candidate is the spatial Λ-Fleming-Viot (SLFV) model, a spatially explicit individually based coalescent model that allows independent inference of two of the most important elements of population structure: local population density and local dispersal. We support increased use of the SLFV model for genetic monitoring by highlighting its benefits over traditional approaches. We also discuss necessary future directions for model development to support large genomic datasets informing real-world management and conservation issues.
Collapse
Affiliation(s)
| | | | - Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Brian K. Hand
- Flathead Lake Biological StationUniversity of MontanaPolsonMTUSA
| | | | - Robin S. Waples
- NOAA FisheriesNorthwest Fisheries Science CenterSeattleWAUSA
| |
Collapse
|
7
|
Genetic structure of a disjunct peripheral population of mountain sucker Pantosteus jordani in the Black Hills, South Dakota, USA. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0820-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Sousa-Santos C, Robalo JI, Pereira AM, Branco P, Santos JM, Ferreira MT, Sousa M, Doadrio I. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity. PeerJ 2016; 4:e1694. [PMID: 26966653 PMCID: PMC4782715 DOI: 10.7717/peerj.1694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed us to assess the relative role of historical versus contemporary factors affecting genetic diversity. Since different patterns were detected for species with identical distribution areas we postulate that contemporary determinants of genetic diversity (species’ intrinsic traits and landscape features) must have played a more significant role than historical factors. Implications for conservation in a context of climate change and highly disturbed habitats are detailed, namely the need to focus management and conservation actions on intraspecific genetic data and to frequently conduct combined genetic and demographic surveys.
Collapse
Affiliation(s)
| | | | | | - Paulo Branco
- CEF-Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal; CERis-Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Lisbon, Portugal
| | - José Maria Santos
- CEF-Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon , Portugal
| | - Maria Teresa Ferreira
- CEF-Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon , Portugal
| | - Mónica Sousa
- Instituto da Conservação da Natureza e das Florestas, I.P. , Lisbon , Portugal
| | | |
Collapse
|