1
|
Conteddu K, English HM, Byrne AW, Amin B, Griffin LL, Kaur P, Morera-Pujol V, Murphy KJ, Salter-Townshend M, Smith AF, Ciuti S. A scoping review on bovine tuberculosis highlights the need for novel data streams and analytical approaches to curb zoonotic diseases. Vet Res 2024; 55:64. [PMID: 38773649 PMCID: PMC11110237 DOI: 10.1186/s13567-024-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024] Open
Abstract
Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated collaborative approaches. We undertook a scoping review of multi-host bTB epidemiology to identify trends in species publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to tropical multi-host episystems. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a "virtuous cycle" of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.
Collapse
Affiliation(s)
- Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | - Holly M English
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew W Byrne
- Department of Agriculture, Food and the Marine, One Health Scientific Support Unit, Dublin, Ireland
| | - Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Prabhleen Kaur
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Kilian J Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Adam F Smith
- Department of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- The Frankfurt Zoological Society, Frankfurt, Germany
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Germany
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Novak R, Robinson JA, Kanduč T, Sarigiannis D, Kocman D. Simulating the impact of particulate matter exposure on health-related behaviour: A comparative study of stochastic modelling and personal monitoring data. Health Place 2023; 83:103111. [PMID: 37708688 DOI: 10.1016/j.healthplace.2023.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Epidemiological and exposure studies concerning particulate matter (PM) often rely on data from sparse governmental stations. While low-cost personal monitors have some drawbacks, recent developments have shown that they can provide fairly accurate and fit-for-purpose data. Comparing a stochastic, i.e., agent-based model (ABM), with environmental, biometric and activity data, collected with personal monitors, could provide insight into how the two approaches assess PM exposure and dose. An ABM was constructed, simulating a PM exposure/dose assessment of 100 agents. Their actions were governed by inherent probabilities of performing an activity, based on population data. Each activity was associated with an intensity level, and a PM pollution level. The ABM results were compared with real-world results. Both approaches had comparable results, showing similar trends and a mean dose. Discrepancies were seen in the activities with the highest mean dose values. A stochastic model, based on population data, does not capture well some specifics of a local population. Combined, personal sensors could provide input for calibration, and an ABM approach can help offset a low number of participants. Implementing a function of agents influencing others transport choice, increased the importance of cycling/walking in the overall dose estimate. Activists, agents with an increased transport influence, did not play an important role at low PM levels. As concentrations rose, higher shares of activists (and their influence) caused the dose to increase. Simulating a person's PM exposure/dose in different scenarios and activities in a virtual environment provides researchers and policymakers with a valuable tool.
Collapse
Affiliation(s)
- Rok Novak
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Ecotechnologies Programme, Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia.
| | - Johanna Amalia Robinson
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Ecotechnologies Programme, Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia; Center for Research and Development, Slovenian Institute for Adult Education, 1000, Ljubljana, Slovenia.
| | - Tjaša Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, 57001, Greece; Environmental Health Engineering, Department of Science, Technology and Society, University School of Advanced Study IUSS, Pavia, Italy.
| | - David Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Haensel M, Schmitt TM, Bogenreuther J. Teaching the Modeling of Human-Environment Systems: Acknowledging Complexity with an Agent-Based Model. JOURNAL OF SCIENCE EDUCATION AND TECHNOLOGY 2023; 32:256-266. [PMID: 36688120 PMCID: PMC9842197 DOI: 10.1007/s10956-022-10022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Agent-based modeling is a promising tool for familiarizing students with complex systems as well as programming skills. Human-environment systems, for instance, entail complex interdependencies that need to be considered when modeling these systems. This complexity is often neglected in teaching modeling approaches. For a heterogeneous group of master's students at a German university, we pre-built an agent-based model. In class, this was used to teach modeling impacts of land use policies and markets on ecosystem services. As part of the course, the students had to perform small research projects with the model in groups of two. This study aims to evaluate how well students could deal with the complexity involved in the model based on their group work outcomes. Chosen indicators were, e.g., the appropriateness of their research goals, the suitability of the methods applied, and how well they acknowledged the limitations. Our study results revealed that teaching complex systems does not need to be done with too simplistic models. Most students, even with little background in modeling and programming, were able to deal with the complex model setup, conduct small research projects, and have a thoughtful discussion on the limitations involved. With adequate theoretical input during lectures, we recommend using models that do not hide the complexity of the systems but foster a realistic simplification of the interactions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10956-022-10022-z.
Collapse
Affiliation(s)
- Maria Haensel
- University of Bayreuth, Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstraße 30, Bayreuth, 95447 Germany
| | - Thomas M. Schmitt
- University of Bayreuth, Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstraße 30, Bayreuth, 95447 Germany
| | - Jakob Bogenreuther
- University of Bayreuth, Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstraße 30, Bayreuth, 95447 Germany
| |
Collapse
|
4
|
Byrne AW, Barrett D, Breslin P, O’Keeffe J, Murphy KJ, Conteddu K, Morera-Pujol V, Ryan E, Ciuti S. Disturbance Ecology Meets Bovine Tuberculosis (bTB) Epidemiology: A Before-and-After Study on the Association between Forest Clearfelling and bTB Herd Risk in Cattle Herds. Pathogens 2022; 11:807. [PMID: 35890051 PMCID: PMC9321662 DOI: 10.3390/pathogens11070807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Disturbance ecology refers to the study of discrete processes that disrupt the structure or dynamics of an ecosystem. Such processes can, therefore, affect wildlife species ecology, including those that are important pathogen hosts. We report on an observational before-and-after study on the association between forest clearfelling and bovine tuberculosis (bTB) herd risk in cattle herds, an episystem where badgers (Meles meles) are the primary wildlife spillover host. The study design compared herd bTB breakdown risk for a period of 1 year prior to and after exposure to clearfelling across Ireland at sites cut in 2015-2017. The percent of herds positive rose from 3.47% prior to clearfelling to 4.08% after exposure. After controlling for confounders (e.g., herd size, herd type), we found that cattle herds significantly increased their odds of experiencing a bTB breakdown by 1.2-times (95%CIs: 1.07-1.36) up to 1 year after a clearfell risk period. Disturbance ecology of wildlife reservoirs is an understudied area with regards to shared endemic pathogens. Epidemiological observational studies are the first step in building an evidence base to assess the impact of such disturbance events; however, such studies are limited in inferring the mechanism for any changes in risk observed. The current cohort study suggested an association between clearfelling and bTB risk, which we speculate could relate to wildlife disturbance affecting pathogen spillback to cattle, though the study design precludes causal inference. Further studies are required. However, ultimately, integration of epidemiology with wildlife ecology will be important for understanding the underlying mechanisms involved, and to derive suitable effective management proposals, if required.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
| | - Damien Barrett
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - James O’Keeffe
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Kilian J. Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Eoin Ryan
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| |
Collapse
|
5
|
Murphy KJ, Morera‐Pujol V, Ryan E, Byrne AW, Breslin P, Ciuti S. Habitat availability alters the relative risk of a bovine tuberculosis breakdown in the aftermath of a commercial forest clearfell disturbance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kilian J. Murphy
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| | - Virginia Morera‐Pujol
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| | - Eoin Ryan
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine (DAFM), Backweston, Kildare Ireland
| | - Andrew W. Byrne
- One Health Scientific Support Unit, National Disease Control Centre (NDCC), Department of Agriculture, Food and the Marine (DAFM), Dublin Ireland
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine (DAFM), Backweston, Kildare Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| |
Collapse
|
6
|
Brown TL, Airs PM, Porter S, Caplat P, Morgan ER. Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biol Lett 2022; 18:20220057. [PMID: 35506237 PMCID: PMC9065971 DOI: 10.1098/rsbl.2022.0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023] Open
Abstract
Wild ruminants are susceptible to infection from generalist helminth species, which can also infect domestic ruminants. A better understanding is required of the conditions under which wild ruminants can act as a source of helminths (including anthelmintic-resistant genotypes) for domestic ruminants, and vice versa, with the added possibility that wildlife could act as refugia for drug-susceptible genotypes and hence buffer the spread and development of resistance. Helminth infections cause significant productivity losses in domestic ruminants and a growing resistance to all classes of anthelmintic drug escalates concerns around helminth infection in the livestock industry. Previous research demonstrates that drug-resistant strains of the pathogenic nematode Haemonchus contortus can be transmitted between wild and domestic ruminants, and that gastro-intestinal nematode infections are more intense in wild ruminants within areas of high livestock density. In this article, the factors likely to influence the role of wild ruminants in helminth infections and anthelmintic resistance in livestock are considered, including host population movement across heterogeneous landscapes, and the effects of climate and environment on parasite dynamics. Methods of predicting and validating suspected drivers of helminth transmission in this context are considered based on advances in predictive modelling and molecular tools.
Collapse
Affiliation(s)
- Tony L. Brown
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Veterinary Sciences Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Paul M. Airs
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Siobhán Porter
- Veterinary Sciences Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Paul Caplat
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Eric R. Morgan
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Watzek J, Hauber ME, Jack KM, Murrell JR, Tecot SR, Brosnan SF. Modelling collective decision-making: Insights into collective anti-predator behaviors from an agent-based approach. Behav Processes 2021; 193:104530. [PMID: 34644659 DOI: 10.1016/j.beproc.2021.104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Collective decision-making is a widespread phenomenon across organisms. Studying how animal societies make group decisions to the mutual benefit of group members, while avoiding exploitation by cheaters, can provide unique insights into the underlying cognitive mechanisms. As a step toward dissecting the proximate mechanisms that underpin collective decision-making across animals, we developed an agent-based model of antipredatory alarm signaling and mobbing during predator-prey encounters. Such collective behaviors occur in response to physical threats in many distantly related species with vastly different cognitive abilities, making it a broadly important model behavior. We systematically assessed under which quantitative contexts potential prey benefit from three basic strategies: predator detection, signaling about the predator (e.g., alarm calling), and retreating from vs. approaching the predator. Collective signaling increased survival rates over individual predator detection in several scenarios. Signaling sometimes led to fewer prey detecting the predator but this effect disappeared when prey animals that had seen the predator both signaled and approached it, as in mobbing. Critically, our results highlight that collective decision-making in response to a threat can emerge from simple rules without needing a central leader or needing to be under conscious control.
Collapse
Affiliation(s)
- Julia Watzek
- Department of Psychology, Language Research Center, Georgia State University, Atlanta, GA, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Katharine M Jack
- Department of Anthropology, Tulane University, New Orleans, LA, USA
| | | | - Stacey R Tecot
- Laboratory for the Evolutionary Endocrinology of Primates, School of Anthropology, University of Arizona, Tucson, AZ, USA
| | - Sarah F Brosnan
- Department of Psychology, Language Research Center, Georgia State University, Atlanta, GA, USA; Department of Philosophy, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
McEntire KD, Gage M, Gawne R, Hadfield MG, Hulshof C, Johnson MA, Levesque DL, Segura J, Pinter-Wollman N. Understanding Drivers of Variation and Predicting Variability Across Levels of Biological Organization. Integr Comp Biol 2021; 61:2119-2131. [PMID: 34259842 DOI: 10.1093/icb/icab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
Differences within a biological system are ubiquitous, creating variation in nature. Variation underlies all evolutionary processes and allows persistence and resilience in changing environments; thus, uncovering the drivers of variation is critical. The growing recognition that variation is central to biology presents a timely opportunity for determining unifying principles that drive variation across biological levels of organization. Currently, most studies that consider variation are focused at a single biological level and not integrated into a broader perspective. Here we explain what variation is and how it can be measured. We then discuss the importance of variation in natural systems, and briefly describe the biological research that has focused on variation. We outline some of the barriers and solutions to studying variation and its drivers in biological systems. Finally, we detail the challenges and opportunities that may arise when studying the drivers of variation due to the multi-level nature of biological systems. Examining the drivers of variation will lead to a reintegration of biology. It will further forge interdisciplinary collaborations and open opportunities for training diverse quantitative biologists. We anticipate that these insights will inspire new questions and new analytic tools to study the fundamental questions of what drives variation in biological systems and how variation has shaped life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danielle L Levesque
- University of Maine College of Natural Sciences Forestry and Agriculture, School of Biology and Ecology
| | | | | |
Collapse
|