1
|
Sandamal S, Tennakoon A, Wijerathna P, Zhang HX, Yu WH, Qiang CG, Han JD, Zhang FM, Ratnasekera D, Ge S. Phenological and morphological variations of Oryza rufipogon and O. nivara in Sri Lanka and their evolutionary implications. Sci Rep 2024; 14:31126. [PMID: 39730894 DOI: 10.1038/s41598-024-82383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O. nivara populations in Sri Lanka by incorporating the in situ observation in natural habitats and manipulative experiments in the common gardens. First, we observed varying degrees of phenological variation under different temporal and spatial conditions, suggesting that flowering phenology of two Oryza species varied depending on both environments and management practices. Particularly, the Sri Lankan O. nivara exhibits high plasticity in flowering phenology, implying that O. nivara might not be an annual in the strict sense. Second, the observation that flowering time of the two species overlapped suggests that the primary factor to maintain the species divergence in Sri Lanka may not be flowering time but rather environments. Third, our selection analysis suggests that interspecific divergence in the traits related to reproduction and habitat preference is adaptive and most likely driven by natural selection. Together, our case study on the Sri Lankan O. rufipogon and O. nivara enhances the understanding of the roles of phenotypic plasticity and environmental factors in the processes of adaptation and speciation.
Collapse
Affiliation(s)
- Salinda Sandamal
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Asanka Tennakoon
- Department of Agricultural Biology Faculty of Agriculture, Eastern University, 30350, Chenkaladi, Sri Lanka
| | - Parakkrama Wijerathna
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka
- Sea Institute of Oceanology, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Hong-Xiang Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Hao Yu
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng-Gen Qiang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing-Dan Han
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Fu-Min Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Disna Ratnasekera
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka.
| | - Song Ge
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Mahendran A, Yadav MC, Tiwari S, Bairwa RK, Krishnan SG, Rana MK, Singh R, Mondal TK. Population structure and genetic differentiation analyses reveal high level of diversity and allelic richness in crop wild relatives of AA genome species of rice (Oryza sativa L.) in India. J Appl Genet 2023; 64:645-666. [PMID: 37743422 DOI: 10.1007/s13353-023-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Crop wild relatives (CWRs) are vital sources of variation for genetic improvement, but their populations are few in genebanks, eroded in natural habitats and inadequately characterized. With a view to explore genetic diversity in CWRs of AA genome rice (Oryza sativa L.) species in India, we analyzed 96 accessions of 10 Oryza species by using 17 quantitative traits and 45 microsatellite markers. The morpho-quantitative traits revealed a high extent of phenotypic variation in the germplasm. Diversity index (H') revealed a high level of within-species variability in O. nivara (H' = 1.09) and O. rufipogon (H' = 1.12). Principal component (PC) analysis explained 79.22% variance with five PCs. Among the traits related to phenology, morphology, and yield, days to heading showed strong positive association with days to 50% flowering (r = 0.99). However, filled grains per panicle revealed positive association with spikelet fertility (0.71) but negative with awn length (- 0.58) and panicle bearing tillers (- 0.39). Cluster analysis grouped all the accessions into three major clusters. Microsatellite analysis revealed 676 alleles with 15.02 alleles per locus. High polymorphism information content (PIC = 0.83) and Shannon's information index (I = 2.31) indicated a high level of genetic variation in the CWRs. Structure analysis revealed four subpopulations; first and second subpopulations comprised only of O. nivara accessions, while the third subpopulation included both O. nivara and O. rufipogon accessions. Population statistics revealed a moderate level of genetic differentiation (FST = 0.14), high gene diversity (HE = 0.87), and high gene flow (Nm = 1.53) among the subpopulations. We found a high level of molecular variance among the genotypes (70%) and low among populations (11%) and within genotypes (19%). The high level of molecular and morphological variability detected in the germplasm of CWRs could be utilized for the improvement of cultivated rice.
Collapse
Affiliation(s)
- Aswin Mahendran
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India
- The Graduate School, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mahesh C Yadav
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Shailesh Tiwari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Rakesh Kumar Bairwa
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar Rana
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR) - National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Institute of Plant Biotechnology, New Delhi, 110012, India
| |
Collapse
|
3
|
Eizenga GC, Kim H, Jung JKH, Greenberg AJ, Edwards JD, Naredo MEB, Banaticla-Hilario MCN, Harrington SE, Shi Y, Kimball JA, Harper LA, McNally KL, McCouch SR. Phenotypic Variation and the Impact of Admixture in the Oryza rufipogon Species Complex ( ORSC). FRONTIERS IN PLANT SCIENCE 2022; 13:787703. [PMID: 35769295 PMCID: PMC9235872 DOI: 10.3389/fpls.2022.787703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Crop wild relatives represent valuable reservoirs of variation for breeding, but their populations are threatened in natural habitats, are sparsely represented in genebanks, and most are poorly characterized. The focus of this study is the Oryza rufipogon species complex (ORSC), wild progenitor of Asian rice (Oryza sativa L.). The ORSC comprises perennial, annual and intermediate forms which were historically designated as O. rufipogon, O. nivara, and O. sativa f. spontanea (or Oryza spp., an annual form of mixed O. rufipogon/O. nivara and O. sativa ancestry), respectively, based on non-standardized morphological, geographical, and/or ecologically-based species definitions and boundaries. Here, a collection of 240 diverse ORSC accessions, characterized by genotyping-by-sequencing (113,739 SNPs), was phenotyped for 44 traits associated with plant, panicle, and seed morphology in the screenhouse at the International Rice Research Institute, Philippines. These traits included heritable phenotypes often recorded as characterization data by genebanks. Over 100 of these ORSC accessions were also phenotyped in the greenhouse for 18 traits in Stuttgart, Arkansas, and 16 traits in Ithaca, New York, United States. We implemented a Bayesian Gaussian mixture model to infer accession groups from a subset of these phenotypic data and ascertained three phenotype-based group assignments. We used concordance between the genotypic subpopulations and these phenotype-based groups to identify a suite of phenotypic traits that could reliably differentiate the ORSC populations, whether measured in tropical or temperate regions. The traits provide insight into plant morphology, life history (perenniality versus annuality) and mating habit (self- versus cross-pollinated), and are largely consistent with genebank species designations. One phenotypic group contains predominantly O. rufipogon accessions characterized as perennial and largely out-crossing and one contains predominantly O. nivara accessions characterized as annual and largely inbreeding. From these groups, 42 "core" O. rufipogon and 25 "core" O. nivara accessions were identified for domestication studies. The third group, comprising 20% of our collection, has the most accessions identified as Oryza spp. (51.2%) and levels of O. sativa admixture accounting for more than 50% of the genome. This third group is potentially useful as a "pre-breeding" pool for breeders attempting to incorporate novel variation into elite breeding lines.
Collapse
Affiliation(s)
- Georgia C. Eizenga
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR, United States
| | - HyunJung Kim
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Janelle K. H. Jung
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Jeremy D. Edwards
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR, United States
| | | | | | - Sandra E. Harrington
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Jennifer A. Kimball
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lisa A. Harper
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Susan R. McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Kaur A, Neelam K, Kaur K, Kitazumi A, de Los Reyes BG, Singh K. Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 2020; 10:6571. [PMID: 32313086 PMCID: PMC7170842 DOI: 10.1038/s41598-020-62649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran, a by-product after milling, is a rich source of phytonutrients like oryzanols, tocopherols, tocotrienols, phytosterols, and dietary fibers. Moreover, exceptional properties of the rice bran oil make it unparalleled to other vegetable oils. However, a lipolytic enzyme Phospholipase D alpha1 (OsPLDα1) causes rancidity and ‘stale flavor’ in the oil, and thus limits the rice bran usage for human consumption. To improve the rice bran quality, sequence based allele mining at OsPLDα1 locus (3.6 Kb) was performed across 48 accessions representing 11 wild Oryza species, 8 accessions of African cultivated rice, and 7 Oryza sativa cultivars. From comparative sequence analysis, 216 SNPs and 30 InDels were detected at the OsPLDα1 locus. Phylogenetic analysis revealed 20 OsPLDα1 cDNA variants which further translated into 12 protein variants. The O. officinalis protein variant, when compared to Nipponbare, showed maximum variability comprising 22 amino acid substitutions and absence of two peptides and two β-sheets. Further, expression profiling indicated significant differences in transcript abundance within as well as between the OsPLDα1 variants. Also, a new OsPLDα1 transcript variant having third exon missing in it, Os01t0172400-06, has been revealed. An O. officinalis accession (IRGC101152) had lowest gene expression which suggests the presence of novel allele, named as OsPLDα1-1a (GenBank accession no. MF966931). The identified novel allele could be further deployed in the breeding programs to overcome rice bran rancidity in elite cultivars.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.,School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ai Kitazumi
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Benildo G de Los Reyes
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India. .,ICAR- National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
5
|
Ogami T, Yasui H, Yoshimura A, Yamagata Y. Identification of Anther Length QTL and Construction of Chromosome Segment Substitution Lines of Oryza longistaminata. PLANTS 2019; 8:plants8100388. [PMID: 31569590 PMCID: PMC6843423 DOI: 10.3390/plants8100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 02/04/2023]
Abstract
Life histories and breeding systems strongly affect the genetic diversity of seed plants, but the genetic architectures that promote outcrossing in Oryza longistaminata, a perennial wild species in Africa, are not understood. We conducted a genetic analysis of the anther length of O. longistaminata accession W1508 using advanced backcross quantitative trait locus (QTL) analysis and chromosomal segment substitution lines (CSSLs) in the genetic background of O. sativa Taichung 65 (T65), with simple sequence repeat markers. QTL analysis of the BC3F1 population (n = 100) revealed that four main QTL regions on chromosomes 3, 5, and 6 were associated to anther length. We selected a minimum set of BC3F2 plants for the development of CSSLs to cover as much of the W1508 genome as possible. The additional minor QTLs were suggested in the regional QTL analysis, using 21 to 24 plants in each of the selected BC3F2 population. The main QTLs found on chromosomes 3, 5, and 6 were validated and designated qATL3, qATL5, qATL6.1, and qATL6.2, as novel QTLs identified in O. longistaminata in the mapping populations of 94, 88, 70, and 95 BC3F4 plants. qATL3, qATL5, and qATL6.1 likely contributed to anther length by cell elongation, whereas qATL6.2 likely contributed by cell multiplication. The QTLs were confirmed again in an evaluation of the W1508ILs. In several chromosome segment substitution lines without the four validated QTLs, the anthers were also longer than those of T65, suggesting that other QTLs also increase anther length in W1508. The cloning and diversity analyses of genes conferring anther length QTLs promotes utilization of the genetic resources of wild species, and the understanding of haplotype evolution on the differentiation of annuality and perenniality in the genus Oryza.
Collapse
Affiliation(s)
- Takayuki Ogami
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University. 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University. 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University. 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University. 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Sandamal S, Tennakoon A, Meng Q, Marambe B, Ratnasekera D, Melo A, Ge S. Population genetics and evolutionary history of the wild rice species Oryza rufipogon and O. nivara in Sri Lanka. Ecol Evol 2018; 8:12056-12065. [PMID: 30598799 PMCID: PMC6303766 DOI: 10.1002/ece3.4665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/02/2018] [Indexed: 11/07/2022] Open
Abstract
Genetic diversity and population genetic structure of the wild rice species Oryza rufipogon and O. nivara in Sri Lanka were studied using 33 microsatellite markers. A total of 315 individuals of 11 natural populations collected from the wet, intermediate, and dry zones of the country were used in the study. We found a moderate to high level of genetic diversity at the population level, with the polymorphic loci (P) ranging from 60.6% to 100% (average 81.8%) and the expected heterozygosity (H E) varying from 0.294 to 0.481 (average 0.369). A significant genetic differentiation between species and strong genetic structure within species were also observed. Based on species distribution modeling, we detected the dynamics of the preferred habitats for the two species in Sri Lanka and demonstrated that both O. rufipogon and O. nivara populations have expanded substantially since the last internal glacial. In addition, we showed that the geographical distribution of the two species corresponded to the climate zones and identified a few of key environmental variables that contribute to the distribution of the two species, implying the potential mechanism for ecological adaptation of these two species in Sri Lanka. These studies provided important insights into the population genetics and evolution of these wild species in Sri Lanka and are of great significance to the in situ conservation and utilization of these wild resources in genetic improvement of rice.
Collapse
Affiliation(s)
- Salinda Sandamal
- Department of Agricultural Biology, Faculty of AgricultureUniversity of RuhunaMataraSri Lanka
| | - Asanka Tennakoon
- Department of Agricultural Biology, Faculty of AgricultureUniversity of RuhunaMataraSri Lanka
| | - Qing‐Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Buddhi Marambe
- Department of Crop Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of AgricultureUniversity of RuhunaMataraSri Lanka
| | - Arthur Melo
- Department of Agriculture, Nutrition and Food SystemsUniversity of New HampshireDurhamNew Hampshire
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Morphological and molecular dissection of wild rices from eastern India suggests distinct speciation between O. rufipogon and O. nivara populations. Sci Rep 2018; 8:2773. [PMID: 29426872 PMCID: PMC5807453 DOI: 10.1038/s41598-018-20693-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/22/2018] [Indexed: 11/14/2022] Open
Abstract
The inter relationships between the two progenitors is interesting as both wild relatives are known to be the great untapped gene reservoirs. The debate continues on granting a separate species status to Oryza nivara. The present study was conducted on populations of Oryza rufipogon and Oryza nivara from Eastern India employing morphological and molecular characteristics. The cluster analysis of the data on morphological traits could clearly classify the two wild forms into two separate discrete groups without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Amplification of hyper variable regions of the genome could reveal 144 alleles suggesting high genetic diversity values (average He = 0.566). Moreover, with 42.37% of uncommon alleles between the two wild relatives, the molecular variance analysis (AMOVA) could detect only 21% of total variation (p < 0.001) among them and rest 59% was within them. The population structure analysis clearly classified these two wild populations into two distinct sub-populations (K = 2) without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Clear differentiation into two distinct groups indicates that O. rufipogon and O. nivara could be treated as two different species.
Collapse
|
8
|
Haritha G, Malathi S, Divya B, Swamy BPM, Mangrauthia SK, Sarla N. Oryza nivara Sharma et Shastry. COMPENDIUM OF PLANT GENOMES 2018. [DOI: 10.1007/978-3-319-71997-9_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Liu R, Zheng XM, Zhou L, Zhou HF, Ge S. Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara. Mol Ecol 2015; 24:5211-28. [PMID: 26340227 DOI: 10.1111/mec.13375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial-interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|