1
|
Zhu D, Liu Y, Gong L, Si M, Wang Q, Feng J, Jiang T. The Consumption and Diversity Variation Responses of Agricultural Pests and Their Dietary Niche Differentiation in Insectivorous Bats. Animals (Basel) 2024; 14:815. [PMID: 38473199 DOI: 10.3390/ani14050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Insectivorous bats are generalist predators and can flexibly respond to fluctuations in the distribution and abundance of insect prey. To better understand the effects of bats on arthropod pests, the types of pests eaten by bats and the response of bats to insect prey need to be determined. In this study, we performed DNA metabarcoding to examine prey composition and pest diversity in the diets of four insectivorous species of bats (Hipposideros armiger, Taphozous melanopogon, Aselliscus stoliczkanus, and Miniopterus fuliginosus). We evaluated the correlation between bat activity and insect resources and assessed dietary niche similarity and niche breadth among species and factors that influence prey consumption in bats. We found that the diets of these bats included arthropods from 23 orders and 200 families, dominated by Lepidoptera, Coleoptera, and Diptera. The proportion of agricultural pests in the diet of each of the four species of bats exceeded 40% and comprised 713 agricultural pests, including those that caused severe economic losses. Bats responded to the availability of insects. For example, a higher abundance of insects, especially Lepidoptera, and a higher insect diversity led to an increase in the duration of bat activity. In areas with more abundant insects, the number of bat passes also increased. The dietary composition, diversity, and niches differed among species and were particularly significant between H. armiger and T. melanopogon; the dietary niche width was the greatest in A. stoliczkanus and the narrowest in H. armiger. The diet of bats was correlated with their morphological and echolocation traits. Larger bats preyed more on insects in the order Coleoptera, whereas the proportion of bats consuming insects in the order Lepidoptera increased as the body size decreased. Bats that emitted echolocation calls with a high peak frequency and duration preyed more on insects in the order Mantodea. Our results suggest that dietary niche differentiation promotes the coexistence of different bat species and increases the ability of bats to consume insect prey and agricultural pests. Our findings provide greater insights into the role of bats that prey on agricultural pests and highlight the importance of combining bat conservation with integrated pest management.
Collapse
Affiliation(s)
- Dan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Man Si
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Qiuya Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
2
|
Tuneu-Corral C, Puig-Montserrat X, Riba-Bertolín D, Russo D, Rebelo H, Cabeza M, López-Baucells A. Pest suppression by bats and management strategies to favour it: a global review. Biol Rev Camb Philos Soc 2023; 98:1564-1582. [PMID: 37157976 DOI: 10.1111/brv.12967] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Fighting insect pests is a major challenge for agriculture worldwide, and biological control and integrated pest management constitute well-recognised, cost-effective ways to prevent and overcome this problem. Bats are important arthropod predators globally and, in recent decades, an increasing number of studies have focused on the role of bats as natural enemies of agricultural pests. This review assesses the state of knowledge of the ecosystem services provided by bats as pest consumers at a global level and provides recommendations that may favour the efficiency of pest predation by bats. Through a systematic review, we assess evidence for predation, the top-down effect of bats on crops and the economic value of ecosystem services these mammals provide, describing the different methodological approaches used in a total of 66 reviewed articles and 18 agroecosystem types. We also provide a list of detailed conservation measures and management recommendations found in the scientific literature that may favour the delivery of this important ecosystem service, including actions aimed at restoring bat populations in agroecosystems. The most frequent recommendations include increasing habitat heterogeneity, providing additional roosts, and implementing laws to protect bats and reduce agrochemical use. However, very little evidence is available on the direct consequences of these practices on bat insectivory in farmland. Additionally, through a second in-depth systematic review of scientific articles focused on bat diet and, as part of the ongoing European Cost Action project CA18107, we provide a complete list of 2308 documented interactions between bat species and their respective insect pest prey. These pertain to 81 bat species belonging to 36 different genera preying upon 760 insect pests from 14 orders in agroecosystems and other habitats such as forest or urban areas. The data set is publicly available and updatable.
Collapse
Affiliation(s)
- Carme Tuneu-Corral
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
- CIBIO-InBIO, Centro de Investigaçaõ em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal
- Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xavier Puig-Montserrat
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| | - Daniel Riba-Bertolín
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, Portici, Naples, 80055, Italy
| | - Hugo Rebelo
- CIBIO-InBIO, Centro de Investigaçaõ em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Mar Cabeza
- Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrià López-Baucells
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| |
Collapse
|
3
|
Deeley S, Kang L, Michalak P, Hallerman E, Ford WM. DNA Metabarcoding-Based Evaluation of the Diet of Big Brown Bats (Eptesicus Fuscus) in the Mid-Atlantic Region. Northeast Nat (Steuben) 2023. [DOI: 10.1656/045.029.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sabrina Deeley
- United States Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401
| | - Lin Kang
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA 71203
| | - Pawel Michalak
- Department of Biomedical Sciences and Pathobiology, VA–MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060
| | - Eric Hallerman
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061
| | - W. Mark Ford
- US Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Blacksburg, VA 24061
| |
Collapse
|
4
|
Horta P, Raposeira H, Baños A, Ibáñez C, Razgour O, Rebelo H, Juste J. Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats. Sci Rep 2022; 12:11695. [PMID: 35803997 PMCID: PMC9270368 DOI: 10.1038/s41598-022-15412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptic species that coexist in sympatry are likely to simultaneously experience strong competition and hybridization. The first phenomenon would lead to character displacement, whereas the second can potentially promote morphological similarity through adaptive introgression. The main goal of this work was to investigate the effect of introgressive hybridization on the morphology of cryptic Iberian Eptesicus bats when facing counteracting evolutionary forces from interspecific competition. We found substantial overlap both in dentition and in wing morphology traits, though mainly in individuals in sympatry. The presence of hybrids contributes to a fifth of this overlap, with hybrids showing traits with intermediate morphometry. Thus, introgressive hybridization may contribute to species adaptation to trophic and ecological space responding directly to the macro-habitats characteristics of the sympatric zone and to local prey availability. On the other hand, fur shade tended to be browner and brighter in hybrids than parental species. Colour differences could result from partitioning of resources as an adaptation to environmental factors such as roost and microhabitats. We argue that a balance between adaptive introgression and niche partitioning shapes species interactions with the environment through affecting morphological traits under selection.
Collapse
Affiliation(s)
- Pedro Horta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal. .,OII - Observatório Inovação Investigação, Seia, Portugal. .,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Helena Raposeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.,OII - Observatório Inovação Investigação, Seia, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | | | - Carlos Ibáñez
- Departmento de Ecología Evolutiva, Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | | | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,ESS, Polytechnic Institute of Setúbal, Setúbal, Portugal, Campus do IPS - Estefanilha, 2910-761 Setúbal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Juste
- Departmento de Ecología Evolutiva, Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| |
Collapse
|
5
|
Heim O, Puisto AIE, Sääksjärvi I, Fukui D, Vesterinen EJ. Dietary analysis reveals differences in the prey use of two sympatric bat species. Ecol Evol 2021; 11:18651-18661. [PMID: 35003699 PMCID: PMC8717349 DOI: 10.1002/ece3.8472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/05/2022] Open
Abstract
One mechanism for morphologically similar and sympatric species to avoid competition and facilitate coexistence is to feed on different prey items within different microhabitats. In the current study, we investigated and compared the diet of the two most common and similar-sized bat species in Japan-Murina ussuriensis (Ognev, 1913) and Myotis ikonnikovi (Ognev, 1912)-to gain more knowledge about the degree of overlap in their diet and their foraging behavior. We found that both bat species consumed prey from the orders of Lepidoptera and Diptera most frequently, while the proportion of Dipterans was higher in the diet of M. ikonnikovi. Furthermore, we found a higher prey diversity in the diet of M. ikonnikovi compared to that of M. ussuriensis that might indicate that the former is a more generalist predator than the latter. In contrast, the diet of M. ussuriensis contained many Lepidopteran families. The higher probability of prey items likely captured via gleaning to occur in the diet of M. ussuriensis in contrast to M. ikonnikovi indicates that M. ussuriensis might switch between aerial-hawking and gleaning modes of foraging behavior. We encourage further studies across various types of habitats and seasons to investigate the flexibility of the diet composition and foraging behavior of these two bat species.
Collapse
Affiliation(s)
- Olga Heim
- Faculty of Life and Medical SciencesDoshisha UniversityKyotanabeJapan
| | - Anna I. E. Puisto
- Centre for Population Health ResearchUniversity of TurkuTurkuFinland
| | | | - Dai Fukui
- The University of Tokyo Hokkaido ForestThe University of TokyoFuranoJapan
| | | |
Collapse
|
6
|
Novella‐Fernandez R, Juste J, Ibáñez C, Rebelo H, Russo D, Alberdi A, Kiefer A, Graham L, Paul H, Doncaster CP, Razgour O. Broad‐scale patterns of geographic avoidance between species emerge in the absence of fine‐scale mechanisms of coexistence. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Roberto Novella‐Fernandez
- School of Biological Sciences University of Southampton Southampton UK
- Terrestrial Ecology Research Group Technical University of Munich Freising Germany
| | - Javier Juste
- Estación Biológica de Doñana (CSIC) Sevilla Spain
- CIBER Epidemiology and Public Health (CIBERESP) Madrid Spain
| | | | - Hugo Rebelo
- CIBIO/Inbio University of Porto Vairão Portugal
| | - Danilo Russo
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Portici Italy
| | - Antton Alberdi
- GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Andreas Kiefer
- Department of Biogeography Trier University Trier Germany
- NABU (Nature and Biodiversity Conservation Union) Berlin Germany
| | - Laura Graham
- Geography, Earth & Environmental Sciences University of Birmingham Birmingham UK
- Biodiversity, Ecology & Conservation Group International Institute for Applied Systems Analysis Laxenburg Austria
| | - Hynek Paul
- School of Physics and Astronomy University of Southampton Southampton UK
| | | | - Orly Razgour
- School of Biological Sciences University of Southampton Southampton UK
- Biosciences University of Exeter Exeter UK
| |
Collapse
|
7
|
Andriollo T, Michaux JR, Ruedi M. Food for everyone: Differential feeding habits of cryptic bat species inferred from DNA metabarcoding. Mol Ecol 2021; 30:4584-4600. [PMID: 34245618 PMCID: PMC8518853 DOI: 10.1111/mec.16073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Ecological theory postulates that niches of co‐occurring species must differ along some ecological dimensions in order to allow their stable coexistence. Yet, many biological systems challenge this competitive exclusion principle. Insectivorous bats from the Northern Hemisphere typically form local assemblages of multiple species sharing highly similar functional traits and pertaining to identical feeding guilds. Although their trophic niche can be accessed with unprecedented details using genetic identification of prey, the underlying mechanisms of resource partitioning remain vastly unexplored. Here, we studied the differential diet of three closely‐related bat species of the genus Plecotus in sympatry and throughout their entire breeding season using DNA metabarcoding. Even at such a small geographic scale, we identified strong seasonal and spatial variation of their diet composition at both intra‐ and interspecific levels. Indeed, while the different bats fed on a distinct array of prey during spring, they showed higher trophic niche overlap during summer and fall, when all three species switched their hunting behaviour to feed on few temporarily abundant moths. By recovering 19 ecological traits for over 600 prey species, we further inferred that each bat species used different feeding grounds and hunting techniques, suggesting that niche partitioning was primarily habitat‐driven. The two most‐closely related bat species exhibited very distinct foraging habitat preferences, while the third, more distantly‐related species was more generalist. These results highlight the need of temporally comprehensive samples to fully understand species coexistence, and that valuable information can be derived from the taxonomic identity of prey obtained by metabarcoding approaches.
Collapse
Affiliation(s)
- Tommy Andriollo
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva, Switzerland.,Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Johan R Michaux
- Laboratoire de Génétique de la Conservation, Université de Liège, Institut de Botanique B22, Liège, Belgium.,CIRAD, Agirs Unit, TA C- 22/E- Campus international de Baillarguet, Montpellier Cedex 5, France
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva, Switzerland
| |
Collapse
|