1
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
2
|
Qiu T, Liu Z, Li H, Yang J, Liu B, Yang Y. Contrasting patterns of genetic and phenotypic divergence of two sympatric congeners, Phragmites australis and P. hirsuta, in heterogeneous habitats. FRONTIERS IN PLANT SCIENCE 2023; 14:1299128. [PMID: 38162310 PMCID: PMC10756910 DOI: 10.3389/fpls.2023.1299128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Habitat heterogeneity leads to genome-wide differentiation and morphological and ecological differentiation, which will progress along the speciation continuum, eventually leading to speciation. Phragmites hirsuta and Phragmites australis are sympatric congeners that coexist in saline-alkaline meadow soil (SAS) and sandy soil (SS) habitats of the Songnen Meadow. The results provided genetic evidence for two separate species of reeds. Genetic diversity and spatial genetic structure supported the specialist-generalist variation hypothesis (SGVH) in these two sympatric reed species, suggesting that P. australis is a generalist and P. hirsuta is a habitat specialist. When we compared these different species with respect to phenotypic and genetic variation patterns in different habitats, we found that the phenotypic differentiation of P. australis between the two habitats was higher than that of P. hirsuta. Multiple subtle differences in morphology, genetic background, and habitat use collectively contribute to ecological success for similar congeners. This study provided evidence of the two reed congeners, which should contribute to their success in harsh environments.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, China
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Weng Y, Li H, Yang J, Zhang Z. The past, present, and future of ecogeographic isolation between closely related Aquilegia plants. Ecol Evol 2023; 13:e10098. [PMID: 37250449 PMCID: PMC10212700 DOI: 10.1002/ece3.10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Quantifying the strength of the ecogeographic barrier is an important aspect of plant speciation research, and serves as a practical step to understanding the evolutionary trajectory of plants under climate change. Here, we quantified the extent of ecogeographic isolation in four closely related Aquilegia species that radiated in the Mountains of SW China and adjacent regions, often lacking intrinsic barriers. We used environmental niche models to predict past, present, and future species potential distributions and compared them to determine the degree of overlap and ecogeographic isolation. Our investigation found significant ecological differentiation in all studied species pairs except A. kansuensis and A. ecalacarata. The current strengths of ecogeographic isolation are above 0.5 in most cases. Compared with current climates, most species had an expanding range in the Last Glacial Maximum, the Mid Holocene, and under four future climate scenarios. Our results suggested that ecogeographic isolation contributes to the diversification and maintenance of Aquilegia species in the Mountains of northern and SW China and would act as an essential reproductive barrier in the future.
Collapse
Affiliation(s)
- Yulin Weng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
- College of Environment and EcologyXiamen UniversityXiamenChina
| | - Huiqiong Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| | - Jiqin Yang
- Gansu Liancheng National Nature ReserveLanzhouChina
| | - Zhi‐Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| |
Collapse
|
4
|
Kolanowska M, Michalska E. The effect of global warming on the Australian endemic orchid Cryptostylis leptochila and its pollinator. PLoS One 2023; 18:e0280922. [PMID: 36716308 PMCID: PMC9886262 DOI: 10.1371/journal.pone.0280922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Ecological stability together with the suitability of abiotic conditions are crucial for long-term survival of any organism and the maintenance of biodiversity and self-sustainable ecosystems relies on species interactions. By influencing resource availability plants affect the composition of plant communities and ultimately ecosystem functioning. Plant-animal interactions are very complex and include a variety of exploitative and mutualistic relationships. One of the most important mutualistic interactions is that between plants and their pollinators. Coevolution generates clustered links between plants and their pollen vectors, but the pollination and reproductive success of plants is reduced by increase in the specialization of plant-animal interactions. One of the most specialized types of pollination is sexual deception, which occurs almost exclusively in Orchidaceae. In this form of mimicry, male insects are attracted to orchid flowers by chemical compounds that resemble insect female sex pheromones and pollinate the flowers during attempted copulations. These interactions are often species-specific with each species of orchid attracting only males of one or very few closely related species of insects. For sexually deceptive orchids the presence of a particular pollen vector is crucial for reproductive success and any reduction in pollinator availability constitutes a threat to the orchid. Because global warming is rapidly becoming the greatest threat to all organisms by re-shaping the geographical ranges of plants, animals and fungi, this paper focuses on predicting the effect of global warming on Cryptostylis leptochila, a terrestrial endemic in eastern Australia that is pollinated exclusively via pseudo copulation with Lissopimpla excelsa. As a species with a single pollinator this orchid is a perfect model for studies on the effect of global warming on plants and their pollen vectors. According to our predictions, global warming will cause a significant loss of suitable niches for C. leptochila. The potential range of this orchid will be 36%-75% smaller than currently and as a result the Eastern Highlands will become unsuitable for C. leptochila. On the other hand, some new niches will become available for this species in Tasmania. Simultaneously, climate change will result in a substantial expansion of niches suitable for the pollinator (44-82%). Currently ca. 71% of the geographical range of the orchid is also suitable for L. excelsa, therefore, almost 30% of the areas occupied by C. leptochila already lack the pollen vector. The predicted availability of the pollen vector increased under three of the climate change scenarios analysed. The predicted habitat loss is a serious threat to this orchid even with the potential colonization of Tasmania by this plant. In the reduced range of C. leptochila the pollen vector will also be present assuring fruit set in populations of this orchid. The genetic pool of the populations in New South Wales and Queensland will probably be lost.
Collapse
Affiliation(s)
- Marta Kolanowska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Poland
- * E-mail:
| | - Ewa Michalska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Poland
| |
Collapse
|