Kivelä L, Elgert C, Lehtonen TK, Candolin U. The color of artificial light affects mate attraction in the common glow-worm.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;
857:159451. [PMID:
36252663 DOI:
10.1016/j.scitotenv.2022.159451]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Artificial light at night, often referred to as 'light pollution', is a global environmental problem that threatens many nocturnal organisms. One such species is the European common glow-worm (Lampyris noctiluca), in which reproduction relies on the ability of sedentary bioluminescent females to attract flying males to mate. Previous studies show that broad-spectrum white artificial light interferes with mate attraction in this beetle. However, much less is known about wavelength-specific effects. In this study, we experimentally investigate how the peak wavelength (color) of artificial light affects glow-worm mate attraction success in the field by using dummy females that trap males landing to mate. Each dummy was illuminated from above by either a blue (peak wavelength: 452 nm), white (449 nm), yellow (575 nm), or red (625 nm) LED lighting, or light switched off in the control. We estimated mate attraction success as both the probability of attracting at least one male and the number of males attracted. In both cases, mate attraction success depended on the peak wavelength of the artificial light, with short wavelengths (blue and white) decreasing it more than long wavelengths (yellow and red). Hence, adjusting the spectrum of artificial light can be an effective measure for mitigating the negative effects of light pollution on glow-worm reproduction.
Collapse