1
|
Li TP, Xie JC, Wang CH, Zhao LQ, Hao DJ. Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39440590 DOI: 10.1111/pce.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lv-Quan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ahsan T, Tian PC, Gao J, Wang C, Liu C, Huang YQ. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system. J Adv Res 2024; 64:1-13. [PMID: 38030126 PMCID: PMC11464484 DOI: 10.1016/j.jare.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION The soil harbors a diverse array of microorganisms, and these are essential components of terrestrial ecosystems. The presence of microorganisms in the soil, particularly in the rhizosphere, is closely linked to plant growth and soil fertility. OBJECTIVE The primary objective of this study is to assess the potential advantages of integrating microbial inoculants with compound fertilizer in enhancing peanut yield. METHODS We utilized Illumina MiSeq high-throughput sequencing technology to conduct our investigation. The experimental design consists of four treatment groups: compound fertilizers (CF), compound fertilizers supplemented with microbial agents (CF + MA), compound fertilizers supplemented with microbial fertilizers (CF + MF), and compound fertilizers supplemented with both microbial agents and microbial fertilizers (CF + MM). RESULTS The experimental results demonstrated a significant increase in peanut yield upon application of CF + MA, CF + MF, and CF + MM treatments. During the blossom stage and pod-setting stage, the soil's catalase, urease, and acid phosphatase activities were significantly increased in the CF + MA, and CF + MM treatments compared to the CF treatment. The application of CF + MA resulted in an increase in bacterial richness in the rhizosphere soil of peanuts, as indicated by the sequencing results. The application of CF + MA, CF + MF, and CF + MM resulted in a reduction of fungal diversity. Proteobacteria, Actinobacteria, and Acidobacteria were the dominant bacterial phyla, while Ascomycota and Basidiomycota were the dominant phyla in the fungal component of the rhizosphere soil microbiome across all experimental treatments. CONCLUSION Microbial agents and fertilizers modify the peanut rhizosphere soil's microbial community structure, as per our findings. The abundance of potentially beneficial bacteria (Bradyrhizobium, Rhizobium, and Burkholderia) and fungi (Trichoderma and Cladophialophora) could increase, while pathogenic fungi (Penicillium and Fusarium) decreased, thereby significantly promoting plant growth and yield of peanut.
Collapse
Affiliation(s)
- Taswar Ahsan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Pei-Cong Tian
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jie Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Chen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Chuang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yu-Qian Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
3
|
Robinson JM, Barnes AD, Fickling N, Costin S, Sun X, Breed MF. Food webs in food webs: the micro-macro interplay of multilayered networks. Trends Ecol Evol 2024; 39:913-922. [PMID: 38960756 DOI: 10.1016/j.tree.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Andrew D Barnes
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Nicole Fickling
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Sofie Costin
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Xin Sun
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
4
|
Nimnoi P, Pirankham P, Srimuang K, Ruanpanun P. Insights into soil nematode diversity and bacterial community of Thai jasmine rice rhizosphere from different paddy fields in Thailand. PeerJ 2024; 12:e17289. [PMID: 38680886 PMCID: PMC11048080 DOI: 10.7717/peerj.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Globally, phytonematodes cause significant crop losses. Understanding the functions played by the plant rhizosphere soil microbiome during phytonematodes infection is crucial. This study examined the distribution of phytonematodes in the paddy fields of five provinces in Thailand, as well as determining the keystone microbial taxa in response to environmental factors that could be considered in the development of efficient biocontrol tactics in agriculture. The results demonstrated that Meloidogyne graminicola and Hirschmanniella spp. were the major and dominant phytonematodes distributed across the paddy fields of Thailand. Soil parameters (total P, Cu, Mg, and Zn) were the important factors affecting the abundance of both nematodes. Illumina next-generation sequencing demonstrated that the levels of bacterial diversity among all locations were not significantly different. The Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the most abundant bacterial phyla observed at all sites. The number of classes of the Acidobacteriae, Clostridia, Bacilli, and Bacteroidia influenced the proportions of Hirschmanniella spp., Tylenchorhynchus spp., and free-living nematodes in the sampling dirt, whereas the number of classes of the Polyangia and Actinobacteria affected the amounts of Pratylenchus spp. in both roots and soils. Soil organic matter, N, and Mn were the main factors that influenced the structure of the bacterial community. Correlations among rhizosphere microbiota, soil nematodes, and soil properties will be informative data in considering phytonematode management in a rice production system.
Collapse
Affiliation(s)
- Pongrawee Nimnoi
- Microbiology Division, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Patawee Pirankham
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Kittipong Srimuang
- Prachinburi Rice Research Center, Division of Rice Research and Development, Rice Department, Ban Sang, Prachin Buri, Thailand
| | - Pornthip Ruanpanun
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Zabalgogeazcoa I, Arellano JB, Mellado-Ortega E, Barro F, Martínez-Castilla A, González-Blanco V, Vázquez de Aldana BR. Symbiotic fungi from a wild grass ( Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions. AOB PLANTS 2024; 16:plae013. [PMID: 38601215 PMCID: PMC11005784 DOI: 10.1093/aobpla/plae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.
Collapse
Affiliation(s)
- Iñigo Zabalgogeazcoa
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Juan B Arellano
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Elena Mellado-Ortega
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27710, USA
| | - Francisco Barro
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Ana Martínez-Castilla
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Virginia González-Blanco
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
6
|
Malacrinò A, Böttner L, Nouere S, Huber M, Schäfer M, Xu S. Induced responses contribute to rapid adaptation of Spirodela polyrhiza to herbivory by Lymnaea stagnalis. Commun Biol 2024; 7:81. [PMID: 38200287 PMCID: PMC10781955 DOI: 10.1038/s42003-023-05706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Herbivory-induced responses in plants are typical examples of phenotypic plasticity, and their evolution is thought to be driven by herbivory. However, direct evidence of the role of induced responses in plant adaptive evolution to herbivores is scarce. Here, we experimentally evolve populations of an aquatic plant (Spirodela polyrhiza, giant duckweed) and its native herbivore (Lymnaea stagnalis, freshwater snail), testing whether herbivory drives rapid adaptive evolution in plant populations using a combination of bioassays, pool-sequencing, metabolite analyses, and amplicon metagenomics. We show that snail herbivory drove rapid phenotypic changes, increased herbivory resistance, and altered genotype frequencies in the plant populations. Additional bioassays suggest that evolutionary changes of induced responses contributed to the rapid increase of plant resistance to herbivory. This study provides direct evidence that herbivory-induced responses in plants can be subjected to selection and have an adaptive role by increasing resistance to herbivores.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | - Laura Böttner
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sara Nouere
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Meret Huber
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Li G, Liu P, Zhao J, Su L, Zhao M, Jiang Z, Zhao Y, Yang X. Correlation of microbiomes in "plant-insect-soil" ecosystem. Front Microbiol 2023; 14:1088532. [PMID: 36793880 PMCID: PMC9922863 DOI: 10.3389/fmicb.2023.1088532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Introduction Traditional chemical control methods pose a damaging effect on farmland ecology, and their long-term use has led to the development of pest resistance. Methods Here, we analyzed the correlations and differences in the microbiome present in the plant and soil of sugarcane cultivars exhibiting different insect resistance to investigate the role played by microbiome in crop insect resistance. We evaluated the microbiome of stems, topsoil, rhizosphere soil, and striped borers obtained from infested stems, as well as soil chemical parameters. Results and Discussion Results showed that microbiome diversity was higher in stems of insect-resistant plants, and contrast, lower in the soil of resistant plants, with fungi being more pronounced than bacteria. The microbiome in plant stems was almost entirely derived from the soil. The microbiome of insect-susceptible plants and surrounding soil tended to change towards that of insect-resistant plants after insect damage. Insects' microbiome was mainly derived from plant stems and partly from the soil. Available potassium showed an extremely significant correlation with soil microbiome. This study validated the role played by the microbiome ecology of plant-soil-insect system in insect resistance and provided a pre-theoretical basis for crop resistance control.
Collapse
Affiliation(s)
- Guomeng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Jihan Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Liangyinan Su
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,*Correspondence: Yang Zhao,
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,Xiping Yang,
| |
Collapse
|