1
|
Ibrahim ZA, Oniye SJ, Luka SA, Chia MA. The contraceptive active ingredient levonorgestrel disrupts the physiology of Macrocyclops albidus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125560. [PMID: 39706557 DOI: 10.1016/j.envpol.2024.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Active pharmaceutical ingredients, such as levonorgestrel (LNG), continue to increase in aquatic ecosystems and are detected in environmental matrices; however, their ability to bioaccumulate and cause reproductive, developmental, and biochemical defects in benthic organisms, such as Macrocyclops albidus, is unknown. This study investigated the effects of LNG on the oxidative stress response, reproduction, and development of M. albidus. Levonorgestrel induced a significant (p < 0.05) increase in total protein with increasing concentrations from 10 ng L-1. Intracellular hydrogen peroxide levels were elevated after exposure to LNG (p < 0.05). Malondialdehyde level declined as LNG concentration increased at day 7 and increased at higher LNG at day 14. Peroxidase activity was significantly (p < 0.05) elevated by lower (1-100 ng L-1) than higher (1000-10000 ng L-1) concentrations of LNG. Glutathione S-transferase activity declined with increasing concentrations of LNG. Increased metamorphosis from the nauplii to the copepodite stage was significantly induced by 1000 and 10000 ng L-1 LNG within four days of exposure. In addition, higher concentrations of LNG induced early production of egg sacs in female M. albidus within four days. Levonorgestrel bioaccumulated in M. albidus, with higher tissue concentrations occurring at high exposures. This study revealed that LNG is readily absorbed and causes stress by interfering with reproduction and metamorphosis in M. albidus, thereby highlighting the role of this zooplankton as a sensitive bioindicator of endocrine disruptors in aquatic ecosystems.
Collapse
Affiliation(s)
- Zainab Abdullahi Ibrahim
- Department of Zoology, Ahmadu Bello University, Zaria, Nigeria; Department of Zoology, University of Ilorin, Nigeria
| | - Sonnie Joshua Oniye
- Department of Biological Sciences, National Open University of Nigeria, Nigeria
| | | | | |
Collapse
|
2
|
Alves AV, Kureki RK, Trevizani TH, Figueira RCL, Choueri RB. Effects of metals in sediment under acidification and temperature rise scenarios on reproduction of the copepod Nitokra sp. MARINE POLLUTION BULLETIN 2024; 209:117125. [PMID: 39437611 DOI: 10.1016/j.marpolbul.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The potential effects of trace metal pollution in sediment under scenarios of warming and CO2-driven acidification on the fecundity of the copepod Nitokra sp. were assessed. Ovigerous females were exposed to laboratory-spiked sediments at two different concentrations of a mixture of metals (Cu, Pb, Zn, and Hg) and to the control (non-spiked sediments), in combinations of two pH (7.7 and 7.1) and two temperatures (25 °C and 27 °C). The results revealed that CO2-driven acidification affected the fecundity of Nitokra sp. by interacting with temperature rise and metal contamination. While rising temperatures generally increased Nitokra sp. fecundity, when combined with metal addition and a CO2 acidified environment, warming led to a decline in offspring production. This is the first study with copepods to demonstrate the interactive effects of sediment contamination by metals, CO2-driven acidification, and temperature increase. Preliminary experiments are required to understand the complex interactive effects of multiple drivers.
Collapse
Affiliation(s)
- Aline Vecchio Alves
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil.
| | - Rafael Keiji Kureki
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| | - Tailisi Hoppe Trevizani
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| |
Collapse
|
3
|
Vermandele F, Sasaki M, Winkler G, Dam HG, Madeira D, Calosi P. When the Going Gets Tough, the Females Get Going: Sex-Specific Physiological Responses to Simultaneous Exposure to Hypoxia and Marine Heatwave Events in a Ubiquitous Copepod. GLOBAL CHANGE BIOLOGY 2024; 30:e17553. [PMID: 39450945 DOI: 10.1111/gcb.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
The existence of sex-specific differences in phenotypic traits is widely recognized. Yet they are often ignored in studies looking at the impact of global changes on marine organisms, particularly within the context of combined drivers that are known to elicit complex interactions. We tested sex-specific physiological responses of the cosmopolitan and ecologically important marine copepod Acartia tonsa exposed to combined hypoxia and marine heatwave (MHW) conditions, both of which individually strongly affect marine ectotherms. Females and males were acutely exposed for 5 days to a combination of either control (18°C) or a high temperature mimicking a MHW (25°C), and normoxia (100% O2 sat.) or mild hypoxia (35% O2 sat.). Life-history traits, as well as sex-specific survival and physiological traits, were measured. Females had overall higher thermal tolerance levels and responded differently than males when exposed to the combined global change drivers investigated. Females also showed lower metabolic thermal sensitivity when compared to males. Additionally, the MHW exerted a dominant effect on the traits investigated, causing a lower survival and higher metabolic rate at 25°C. However, egg production rates appeared unaffected by hypoxia and MHW conditions. Our results showed that MHWs could strongly affect copepods' survival, that combined exposure to hypoxia and MHW exerted an interactive effect only on CTmax, and that sex-specific vulnerability to these global change drivers could have major implications for population dynamics. Our results highlight the importance of considering the differences in the responses of females and males to rapid environmental changes to improve the implementation of climate-smart conservation approaches.
Collapse
Affiliation(s)
- Fanny Vermandele
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Matthew Sasaki
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Gesche Winkler
- Institut Des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Canada
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Gafanha da Nazaré, Portugal
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
4
|
Zervoudaki S, Protopapa M, Koutsandrea A, Jansson A, von Weissenberg E, Fyttis G, Sakavara A, Kavakakis K, Chariati C, Anttila K, Bourdin P, Mostajir B, Vidussi F, Engström-Öst J. Zooplankton responses to simulated marine heatwave in the Mediterranean Sea using in situ mesocosms. PLoS One 2024; 19:e0308846. [PMID: 39190700 DOI: 10.1371/journal.pone.0308846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Globally, marine heatwave frequency, intensity, and duration are on the rise, posing a significant threat to plankton communities, the foundational elements of the marine food web. This study investigates the ecological and physiological responses of a temperate plankton community in the Thau lagoon, north-western Mediterranean, to a simulated +3°C ten-day heatwave followed by a ten-day post-heatwave period in in-situ mesocosms. Our analyses encompassed zooplankton grazing, production, community composition in water and sediment traps, as well as oxidative stress and anti-oxidant biomarkers. The results revealed increased abundances of harpacticoid copepods and polychaete larvae during the simulated heatwave and post-heatwave event. Sediment trap data indicated elevated mortality, particularly dominated by polychaete larvae during the post-heatwave period. Oxidative stress biomarker (lipid peroxidation LPX) levels in the plankton community correlated with temperature, signaling cellular damage during the heatwave. LPX increased and proteins decreased with increasing salinity during the experiment. Offspring production peaked during the post-heatwave phase. Notably, the calanoid copepod Acartia clausi exhibited a preference for ciliates as its primary prey, constituting 20% of the overall available prey. Our findings suggest a potential shift in coastal zooplankton communities during future marine heatwaves, transitioning from calanoid mesozooplankton dominance to a system featuring meroplankton and/or harpacticoid copepods. Although species preying on microzooplankton may gain advantages in such conditions, the study underscores the damaging impact of heatwaves on organismal lipids, with potential consequences for reproduction, growth, and survival within marine ecosystems.
Collapse
Affiliation(s)
- Soultana Zervoudaki
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | - Maria Protopapa
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | - Andriana Koutsandrea
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
- Novia University of Applied Sciences, Ekenäs, Finland
| | - Anna Jansson
- Novia University of Applied Sciences, Ekenäs, Finland
| | - Ella von Weissenberg
- Biocenter Finland, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Georgios Fyttis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Athanasia Sakavara
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | - Kostas Kavakakis
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | | | - Katja Anttila
- Department of Biology, University of Turku, Turku, Finland
| | | | - Behzad Mostajir
- Marine Biodiversity, Exploitation and Conservation, Ifremer, IRD, Université de Montpellier, Montpellier Cedex 05, France
| | - Francesca Vidussi
- Marine Biodiversity, Exploitation and Conservation, Ifremer, IRD, Université de Montpellier, Montpellier Cedex 05, France
| | | |
Collapse
|
5
|
Fathy RF. Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios. CHEMOSPHERE 2024; 355:141810. [PMID: 38554872 DOI: 10.1016/j.chemosphere.2024.141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.
Collapse
Affiliation(s)
- Ragaa F Fathy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre (NRC), 33 El-Buhouth St, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
6
|
Zhang Y, Xie D, Lin Q, Zhou X. Seawater warming intensifies nickel toxicity to a marine copepod: a multigenerational perspective. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106730. [PMID: 37862730 DOI: 10.1016/j.aquatox.2023.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Due to human activities, marine organisms are frequently co-stressed with nickel (Ni) pollution and seawater warming; nevertheless, very scarce information is known about their interaction in marine biota under a multigenerational scenario. Here, after verifying the interaction of Ni and warming via a 48-h acute test, we conducted a multigenerational experiment (F0-F2), in which the marine copepod Tigriopus japonicus was exposed to Ni at environmentally realistic concentrations (0, 2, and 20 µg/L) under ambient (22℃) and predicted seawater warming (26℃) conditions. Ni accumulation and the important life history traits were analyzed for each generation. Results showed that Ni exposure caused Ni bioaccumulation and thus compromised the survivorship and egg production of T. japonicus. In particular, seawater warming significantly increased Ni accumulation, thus intensifying the negative effects of Ni on its survivorship and development. Overall, this study suggests that Ni multigenerational exposure even at environmentally realistic concentrations could produce a significant impact on marine copepod's health, and this impact would be intensified under the projected seawater warming, providing a mechanistic understanding of the interaction between warming and Ni pollution in marine organisms from a multigenerational perspective.
Collapse
Affiliation(s)
- Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qingxian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Lee Y, Kim MS, Park JJC, Lee YH, Lee JS. Oxidative stress-mediated synergistic deleterious effects of nano- and microplastics in the hypoxia-conditioned marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2022; 181:113933. [PMID: 35850089 DOI: 10.1016/j.marpolbul.2022.113933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
While pollution due to nano- and micro-sized plastics (NMPs) and hypoxic conditions both occur in coastal areas, the deleterious potential of co-exposure to hypoxia and NMPs (hypoxia and micro-sized plastics, HMPs; hypoxia and nano-sized plastics, HNPs) is largely unclear. Here, we provide evidence for multigenerational effects of HMP and HNP in the marine rotifer Brachionus plicatilis by investigating changes in its life traits, antioxidant system, and hypoxia-inducible factor (HIF) pathway using an orthogonal experimental design, with nanoscale and microscale particles measuring 0.05 μm and 6.0 μm in diameter, respectively, and hypoxic conditions of 0.5 mg/L for six generations. Combined exposure to NMPs and hypoxia caused a significant decrease in fecundity and overproduction of reactive oxygen species (ROS). The HIF pathway and circadian clock genes were also significantly upregulated in response to HMP and HNP exposure. In particular, synergistic deleterious effects of HNP were evident, suggesting that size-dependent toxicity can be a major driver of the effects of hypoxia and NMP co-exposure. After several generations of exposure, ROS levels returned to basal levels and transcriptomic resilience was observed, although rotifer reproduction remained suppressed. These findings help eluciating the underlying molecular mechanisms involved in responses to plastic pollution in hypoxic conditions.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W1M0, Canada
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|