1
|
Ma L, Shao L, Bao H, Zhang Q. Editorial: Plant diversity patterns and drivers. FRONTIERS IN PLANT SCIENCE 2024; 15:1474649. [PMID: 39246809 PMCID: PMC11378320 DOI: 10.3389/fpls.2024.1474649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Le Ma
- Inner Mongolia University, Hohhot, China
| | - Liwen Shao
- Inner Mongolia University, Hohhot, China
| | - Hailong Bao
- Inner Mongolia Pratacultural Technology Innovation Center Co. Ltd, Hohhot, China
| | - Qing Zhang
- Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Chao H, Cai A, Heimburger B, Wu Y, Zhao D, Sun M, Hu F. Keystone taxa enhance the stability of soil bacterial communities and multifunctionality under steelworks disturbance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120664. [PMID: 38508006 DOI: 10.1016/j.jenvman.2024.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China; J.F. Blumenbach Institute of Zoology and Anthropology, University of Gottingen, Untere Karspule 2, 37073, Gottingen, Germany
| | - Anjuan Cai
- Jiangsu Provincial Academy of Environmental Science, 210019, China
| | - Bastian Heimburger
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Gottingen, Untere Karspule 2, 37073, Gottingen, Germany
| | - Yunling Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Duokai Zhao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Wen L, Zhao K, Sun H, Feng G, Sun Q, Liang C, Li Z, Wang L, Svenning J. Drivers of desert plant beta diversity on the Qinghai-Tibet plateau. Ecol Evol 2024; 14:e10993. [PMID: 38380069 PMCID: PMC10877311 DOI: 10.1002/ece3.10993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The desert ecosystem of the Qinghai-Tibet Plateau (QTP) is an important component of China's desert ecosystem. Studying the mechanisms shaping the taxonomic, phylogenetic, and functional beta diversity of plant communities in the QTP desert will help us to promote scientific conservation and management of the region's biodiversity. This study investigated the effects of environmental (including altitude, climate factors, and soil factors) and geographic distances on three facets of beta diversity as well as their turnover and nestedness components based on field survey data. The results showed that turnover components dominate the three facets of beta diversity. However, the turnover contributions to phylogenetic and functional beta diversity were lower than for taxonomic beta diversity. Environmental distance had a greater influence than geographic distance, with the former uniquely explaining 15.2%-22.8% of beta diversity and the latter explaining only 1.7%-2.4%. Additionally, the explanatory power of different factors for beta diversity differed between herbs and shrubs, with environmental distance being more important for the latter. Distance-based redundancy analysis suggested that soil total potassium content had a substantial impact on the beta diversity of three dimensions, with mean temperature of the coldest month and soil total phosphorus content having a substantial impact on taxonomic and functional beta diversity as well. Our results support that environmental sorting plays a predominant role in shaping plant community composition across QTP desert ecosystems. To maintain the plant diversity of this region, it is crucial to prioritize the conservation of its diverse environmental conditions and actively mitigate its degradation by anthropogenic pressures.
Collapse
Affiliation(s)
- Lu Wen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityAarhus CDenmark
| | - Kexuan Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Haoyu Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Gang Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Qiang Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jens‐Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
4
|
Yang Y, Suyamud B, Liang S, Liang X, Wan W, Zhang W. Distinct spatiotemporal succession of bacterial generalists and specialists in the lacustrine plastisphere. Environ Microbiol 2023; 25:2746-2760. [PMID: 37190986 DOI: 10.1111/1462-2920.16400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.
Collapse
Affiliation(s)
- Yuyi Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Bongkotrat Suyamud
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Science, Tibet University, Lhasa, China
| | - Xinjin Liang
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Jiang LM, Sattar K, Lü GH, Hu D, Zhang J, Yang XD. Different contributions of plant diversity and soil properties to the community stability in the arid desert ecosystem. FRONTIERS IN PLANT SCIENCE 2022; 13:969852. [PMID: 36092411 PMCID: PMC9453452 DOI: 10.3389/fpls.2022.969852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
As a one of the focuses of ecological research, understanding the regulation of plant diversity on community stability is helpful to reveal the adaption of plant to environmental changes. However, the relationship between plant diversity and community stability is still controversial due to the scale effect of its influencing factors. In this study, we compared the changes in community stability and different plant diversity (i.e., species, functional, and phylogenetic diversities) between three communities (i.e., riparian forest, ecotone community, and desert shrubs), and across three spatial scales (i.e., 100, 400, and 2500 m2), and then quantified the contribution of soil properties and plant diversity to community stability by using structural equation model (SEM) in the Ebinur Lake Basin Nature Reserve of the Xinjiang Uygur Autonomous Region in the NW China. The results showed that: (1) community stability differed among three communities (ecotone community > desert shrubs > riparian forest). The stability of three communities all decreased with the increase of spatial scale (2) species diversity, phylogenetic richness and the mean pairwise phylogenetic distance were higher in ecotone community than that in desert shrubs and riparian forest, while the mean nearest taxa distance showed as riparian forest > ecotone community > desert shrubs. (3) Soil ammonium nitrogen and total phosphorus had the significant direct negative and positive effects on the community stability, respectively. Soil ammonium nitrogen and total phosphorus also indirectly affected community stability by adjusting plant diversity. The interaction among species, functional and phylogenetic diversities also regulated the variation of community stability across the spatial scales. Our results suggested that the effect of plant diversities on community stability were greater than that of soil factors. The asynchronous effect caused by the changes in species composition and functional traits among communities had a positive impact on the stability. Our study provided a theoretical support for the conservation and management of biodiversity and community functions in desert areas.
Collapse
Affiliation(s)
- La-Mei Jiang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Kunduz Sattar
- Xinjiang Uygur Autonomous Region Forestry Planning Institute, Ürümqi, China
| | - Guang-Hui Lü
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Dong Hu
- College of Life Science, Northwest University, Xi’an, China
| | - Jie Zhang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, China
| |
Collapse
|