1
|
Lu J, Wang J, Dai R, Wang X. The mitochondrial genome sequences of eleven leafhopper species of Batracomorphus (Hemiptera: Cicadellidae: Iassinae) reveal new gene rearrangements and phylogenetic implications. PeerJ 2024; 12:e18352. [PMID: 39465150 PMCID: PMC11505954 DOI: 10.7717/peerj.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Batracomorphus is the most diverse and widely distributed genus of Iassinae. Nevertheless, there has been no systematic analysis of the genome structure and phylogenetic relationships of the genus. To determine the characteristics of the mitogenomes of Batracomorphus species as well as the phylogenetic relationships between them, we sequenced and compared the mitogenomes of 11 representative Batracomorphus species. The results revealed that the mitogenomes of the 11 Batracomorphus species exhibited highly similar gene and nucleotide composition, and codon usage compared with other reported mitogenomes of Iassinae. Of these 11 species, we found that the mitogenomes of four species were rearranged in the region from trnI-trnQ-trnM to trnQ-trnI-trnM, whereas the remaining species presented a typical gene order. The topologies of six phylogenetic trees were in agreement. Eurymelinae consistently formed paraphyletic groups. Ledrinae and Evacanthinae formed sister taxa within the same clade. Similarly, Typhlocybinae and Mileewinae consistently clustered together. All phylogenetic trees supported the monophyly of Iassinae, indicating its evolutionary distinctiveness while also revealing its sister relationship with Coelidiinae. Notably, the nodes for all species of the genus Batracomorphus were well supported and these taxa clustered into a large branch that indicated monophyly. Within this large branch, four Batracomorphus species with a gene rearrangement (trnQ-trnI-trnM) exhibited distinctive clustering, which divided the large branch into three minor branches. These findings expand our understanding of the taxonomy, evolution, genetics, and systematics of the genus Batracomorphus and broader Iassinae groups.
Collapse
Affiliation(s)
- Jikai Lu
- Institute of Entomology, Guizhou University; The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Renhuai Dai
- Institute of Entomology, Guizhou University; The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Xianyi Wang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Luo G, Pu T, Wang J, Ran W, Zhao Y, Dietrich CH, Li C, Song Y. Genetic differentiation and phylogeography of Erythroneurini (Hemiptera, Cicadellidae, Typhlocybinae) in the southwestern karst area of China. Ecol Evol 2024; 14:e11264. [PMID: 38606344 PMCID: PMC11007260 DOI: 10.1002/ece3.11264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Erythroneurini is the largest tribe of the microleafhopper subfamily Typhlocybinae. Most prior research on this tribe has focused on traditional classification, phylogeny, and control of agricultural pests, and the phylogeography of the group remains poorly understood. In this study, the mitochondrial genomes of 10 erythroneurine species were sequenced, and sequences of four genes were obtained for 12 geographical populations of Seriana bacilla. The new sequence data were combined with previously available mitochondrial DNA sequence data and analyzed using Bayesian and Maximum-Likelihood-based phylogenetic methods to elucidate relationships among genera and species and estimate divergence times. Seriana was shown to be derived from within Empoascanara. Phylogeographic and population genetic analysis of the endemic Chinese species Seriana bacilla suggest that the species diverged about 54.85 Mya (95% HPD: 20.76-66.23 million years) in the Paleogene period and that population divergence occurred within the last 14 million years. Ancestral area reconstruction indicates that Seriana bacilla may have originated in the central region of Guizhou, and geographical barriers are the main factors affecting gene flow among populations. Ecological niche modeling using the MaxEnt model suggests that the distribution of the species was more restricted in the past but is likely to expand in the future years 2050 and 2070.
Collapse
Affiliation(s)
- Guimei Luo
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| | - Tianyi Pu
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
| | - Jinqiu Wang
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Weiwei Ran
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Yuanqi Zhao
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Christopher H. Dietrich
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
| | - Yuehua Song
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| |
Collapse
|
3
|
Zhang N, Wang J, Pu T, Li C, Song Y. Two new species of Erythroneurini (Hemiptera, Cicadellidae, Typhlocybinae) from southern China based on morphology and complete mitogenomes. PeerJ 2024; 12:e16853. [PMID: 38344292 PMCID: PMC10859084 DOI: 10.7717/peerj.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Erythroneurine leafhoppers (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini) are utilized to resolve the relationship between the four erythroneurine leafhopper (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini): Arboridia (Arboridia) rongchangensis sp. nov., Thaia (Thaia) jiulongensis sp. nov., Mitjaevia bifurcata Luo, Song & Song, 2021 and Mitjaevia diana Luo, Song & Song, 2021, the two new species are described and illustrated. The mitochondrial gene sequences of these four species were determined to update the mitochondrial genome database of Erythroneurini. The mitochondrial genomes of four species shared high parallelism in nucleotide composition, base composition and gene order, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and an AT control region, which was consistent with majority of species in Cicadellidae; all genes revealed common trait of a positive AT skew and negative GC skew. The mitogenomes of four species were ultra-conservative in structure, and which isanalogous to that of others in size and A + T content. Phylogenetic trees based on the mitogenome data of these species and another 24 species were built employing the maximum likelihood and Bayesian inference methods. The results indicated that the four species belong to the tribe Erythroneurini, M. diana is the sister-group relationship of M. protuberanta + M. bifurcata. The two species Arboridia (Arboridia) rongchangensis sp. nov. and Thaia (Thaia) jiulongensis sp. nov. also have a relatively close genetic relationship with the genus Mitjaevia.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region/Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
Piccinno R, Tatti A, Avosani S, Galla G, Lazazzara V, Pedrazzoli F, Zadra N, Rodeghiero M, Seljak G, Özgen İ, Hauffe HC, Verrastro V, Stacconi MVR, Mazzoni V, Rota-Stabelli O. A multidisciplinary approach to tackling invasive species: barcoding, morphology, and metataxonomy of the leafhopper Arboridia adanae. Sci Rep 2024; 14:2229. [PMID: 38278818 PMCID: PMC10817979 DOI: 10.1038/s41598-023-49410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024] Open
Abstract
The leafhopper genus Arboridia includes several species that feed on Vitis vinifera and cause leaf chlorosis. We report the first alien Arboridia infestation in Italy in 2021 in an Apulian vineyard. To confirm the taxonomic status of the species responsible for crop damage, and reconstruct its demographic history, we barcoded individuals from Apulia together with Arboridia spp. from Crete (Greece), A. adanae from Central Turkey and other specimens of the presumed sister species, A. dalmatina from Dalmatia (Croatia). Molecular phylogenies and barcoding gap analysis identified clades not associated with sampling locations. This result is incongruent with classical specimen assignment and is further supported by morphological analyses, which did not reveal significant differences among the populations. Therefore, we propose A. dalmatina as a junior synonym of A. adanae, which would become the only grapevine-related Arboridia species in the eastern Mediterranean. To further characterise A. adanae evolution, we performed a molecular clock analysis that suggested a radiation during the Pleistocene glaciations. Finally, to assess whether the Apulian individuals carried microorganisms of agricultural relevance, we sequenced their bacterial microbiota using 16S rRNA amplicon sequencing identifying three phytopathogens not generally associated with Arboridia activities as well as Wolbachia in one Apulian haplogroup. We discuss the agricultural implications of this infestation.
Collapse
Affiliation(s)
- Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, San Michele All'Adige, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, San Michele All'Adige, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Sabina Avosani
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giulio Galla
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
| | - Valentina Lazazzara
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| | - Federico Pedrazzoli
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy
| | - Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., Palermo, Italy
| | - Mirco Rodeghiero
- Center Agriculture Food Environment (C3A), University of Trento, San Michele All'Adige, Trento, Italy
| | | | - İnanç Özgen
- Bioengineering Department, Engineering Faculty, Fırat University, Elazığ, Turkey
| | - Heidi C Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., Palermo, Italy
| | - Vincenzo Verrastro
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM) - Bari, Valenzano, Bari, Italy
| | - Marco Valerio Rossi Stacconi
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy
| | - Valerio Mazzoni
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy.
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele All'Adige, Trento, Italy.
- Plant Protection Unit, Research and Innovation Centre, San Michele All'Adige, Fondazione Edmund Mach, Trento, Italy.
| |
Collapse
|
5
|
Zhang N, Pu T, Wang J, Tan W, Yuan Z, Li C, Song Y. Phylogenetic Analysis of Two New Mitochondrial Genomes of Singapora shinshana and Seriana bacilla from the Karst Region of Southwest China. Genes (Basel) 2023; 14:1318. [PMID: 37510223 PMCID: PMC10379811 DOI: 10.3390/genes14071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Leafhoppers have been identified as a serious threat to different plants. To explore the characteristics of mitogenomes and reveal the phylogenetic positions of two species in the Typhlocybinae, complete mitogenomes of Singapora shinshana and Seriana bacilla were sequenced and annotated for the first time with lengths of 15,402 bp and 15,383 bp, respectively. The two mitogenomes contained 13 PCGs, 22 tRNA genes and 2 rRNA genes. The genome content, gene order, nucleotide composition, codon usage and amino acid composition are similar to those of other typical mitogenomes of Typhlocybinae. All 13 PCGs started with ATN codons, except for atp8 (TTA) and nad5 (TTG). All tRNAs were folded into a typical cloverleaf secondary structure, except for tRNA-Ser1 and tRNA-Val. Moreover, phylogenetic trees were constructed and analyzed based on all the PCGs from 42 mitogenomes using maximum likelihood (ML) and Bayesian inference (BI) methods. The results supported that eleven subfamilies are all monophyletic groups, S. shinshana and S. bacilla are members of Erythroneurini, but S. shinshana and the genus Empoascanara have a very close relationship with ((((Empoascanara sipra+ Empoascanara wengangensis) + Empoascanara dwalata) + Empoascanara gracilis) + S. shinshana), and S. bacilla is closely related to the genus Mitjaevia ((Mitjaevia dworakowskae + Mitjaevia shibingensis) + S. bacilla). These results provide valuable information for future study of evolutionary relationships in Typhlocybinae.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Weiwen Tan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Zhouwei Yuan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| |
Collapse
|
6
|
Janik K, Panassiti B, Kerschbamer C, Burmeister J, Trivellone V. Phylogenetic Triage and Risk Assessment: How to Predict Emerging Phytoplasma Diseases. BIOLOGY 2023; 12:biology12050732. [PMID: 37237544 DOI: 10.3390/biology12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Phytoplasma diseases pose a substantial threat to diverse crops of agricultural importance. Management measures are usually implemented only after the disease has already occurred. Early detection of such phytopathogens, prior to disease outbreak, has rarely been attempted, but would be highly beneficial for phytosanitary risk assessment, disease prevention and mitigation. In this study, we present the implementation of a recently proposed proactive disease management protocol (DAMA: Document, Assess, Monitor, Act) for a group of vector-borne phytopathogens. We used insect samples collected during a recent biomonitoring program in southern Germany to screen for the presence of phytoplasmas. Insects were collected with malaise traps in different agricultural settings. DNA was extracted from these mass trap samples and subjected to PCR-based phytoplasma detection and mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding. Phytoplasma DNA was detected in two out of the 152 insect samples analyzed. Phytoplasma identification was performed using iPhyClassifier based on 16S rRNA gene sequence and the detected phytoplasmas were assigned to 'Candidatus Phytoplasma asteris'-related strains. Insect species in the sample were identified by DNA metabarcoding. By using established databases, checklists, and archives, we documented historical associations and records of phytoplasmas and its hosts in the study region. For the assessment in the DAMA protocol, phylogenetic triage was performed in order to determine the risk for tri-trophic interactions (plant-insect-phytoplasma) and associated disease outbreaks in the study region. A phylogenetic heat map constitutes the basis for risk assessment and was used here to identify a minimum number of seven leafhopper species suggested to be monitored by stakeholders in this region. A proactive stance in monitoring changing patterns of association between hosts and pathogens can be a cornerstone in capabilities to prevent future phytoplasma disease outbreaks. To the best of our knowledge, this is the first time that the DAMA protocol has been applied in the field of phytopathology and vector-borne plant diseases.
Collapse
Affiliation(s)
- Katrin Janik
- Laimburg Research Centre, Functional Genomics, Laimburg 6-Pfatten (Vadena), 39040 Auer, South Tyrol, Italy
| | | | - Christine Kerschbamer
- Laimburg Research Centre, Functional Genomics, Laimburg 6-Pfatten (Vadena), 39040 Auer, South Tyrol, Italy
| | - Johannes Burmeister
- Institute for Organic Farming, Soil and Resource Management, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
7
|
Wen H, Zhou X, Dietrich CH, Huang M. Morphometric analysis of forewing venation does not consistently differentiate the leafhopper tribes Typhlocybini and Zyginellini. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1003817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tribes of the leafhopper subfamily Typhlocybinae have traditionally been defined based on differences in hind wing venation, but the forewing venation also differs among some tribes. Here we used geometric morphometric analysis to determine whether previously recognized tribes can be distinguished based on the configuration of forewing veins. Focusing on the apical area of the male right forewing, 76 semi-landmarks in six curves corresponding to individual wing veins were measured for representatives of four previously recognized tribes and the data were analyzed using principal component analysis (PCA), canonical variable analysis (CVA), and UPGMA clustering analysis. The study showed that differences in the apical area of the forewing mainly occur in RP, MP′, and MP″ + CuA′. PCA, CVA, and cluster analysis showed three distinct clusters representing tribes Empoascini, Erythroneurini, and Typhlocybini (sensu lato) but failed to distinguish Typhlocybini (sensu stricto) from Zyginellini, which has been considered as either separate tribe or a synonym of Typhlocybini by recent authors. The results show that the forewing venation differs among tribes of Typhlocybinae, but also agree with recent molecular phylogenetic analyses, indicating that Zyginellini is derived from within Typhlocybini.
Collapse
|