1
|
Schrader J, Wright IJ, Kreft H, Westoby M. A roadmap to plant functional island biogeography. Biol Rev Camb Philos Soc 2021; 96:2851-2870. [PMID: 34423523 DOI: 10.1111/brv.12782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.
Collapse
Affiliation(s)
- Julian Schrader
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biodiversity, Macroecology and Biogeography, University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Holger Kreft
- Department of Biodiversity, Macroecology and Biogeography, University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
2
|
Starko S, Demes KW, Neufeld CJ, Martone PT. Convergent evolution of niche structure in Northeast Pacific kelp forests. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Samuel Starko
- Department of Botany & Biodiversity Research Centre University of British Columbia Vancouver BC Canada
- Department of Biology University of Victoria Victoria BC Canada
- Bamfield Marine Sciences Centre Bamfield BC Canada
| | - Kyle W. Demes
- Institutional Strategic Awards Simon Fraser University Burnaby BC Canada
| | | | - Patrick T. Martone
- Department of Botany & Biodiversity Research Centre University of British Columbia Vancouver BC Canada
- Bamfield Marine Sciences Centre Bamfield BC Canada
| |
Collapse
|
3
|
Starko S, Bailey LA, Creviston E, James KA, Warren A, Brophy MK, Danasel A, Fass MP, Townsend JA, Neufeld CJ. Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores. PLoS One 2019; 14:e0213191. [PMID: 30913219 PMCID: PMC6435185 DOI: 10.1371/journal.pone.0213191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/16/2019] [Indexed: 11/18/2022] Open
Abstract
Biodiversity loss is driven by interacting factors operating at different spatial scales. Yet, there remains uncertainty as to how fine-scale environmental conditions mediate biological responses to broad-scale stressors. We surveyed intertidal rocky shore kelp beds situated across a local gradient of wave action and evaluated changes in kelp diversity and abundance after more than two decades of broad scale stressors, most notably the 2013-2016 heat wave. Across all sites, species were less abundant on average in 2017 and 2018 than during 1993-1995 but changes in kelp diversity were dependent on wave exposure, with wave exposed habitats remaining stable and wave sheltered habitats experiencing near complete losses of kelp diversity. In this way, wave exposed sites have acted as refugia, maintaining regional kelp diversity despite widespread local declines. Fucoids, seagrasses and two stress-tolerant kelp species (Saccharina sessilis, Egregia menziesii) did not decline as observed in other kelps, and the invasive species Sargassum muticum increased significantly at wave sheltered sites. Long-term monitoring data from a centrally-located moderate site suggest that kelp communities were negatively impacted by the recent heatwave which may have driven observed losses throughout the region. Wave-sheltered shores, which saw the largest declines, are a very common habitat type in the Northeast Pacific and may be especially sensitive to losses in kelp diversity and abundance, with potential consequences for coastal productivity. Our findings highlight the importance of fine-scale environmental heterogeneity in mediating biological responses and demonstrate how incorporating differences between habitat patches can be essential to capturing scale-dependent biodiversity loss across the landscape.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Lauren A. Bailey
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Elandra Creviston
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Katelyn A. James
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Alison Warren
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Megan K. Brophy
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Andreea Danasel
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Megan P. Fass
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A. Townsend
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|