1
|
Bonfim M, López DP, Repetto MF, Freestone AL. Speed and degree of functional and compositional recovery varies with latitude and community age. Ecology 2024; 105:e4259. [PMID: 38404022 DOI: 10.1002/ecy.4259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Rates at which a community recovers after disturbance, or its resilience, can be accelerated by increased net primary productivity and recolonization dynamics such as recruitment. These mechanisms can vary across biogeographic gradients, such as latitude, suggesting that biogeography is likely important to predicting resilience. To test whether community resilience, informed by functional and compositional recovery, hinges on geographic location, we employed a standardized replicated experiment on marine invertebrate communities across four regions from the tropics to the subarctic zone. Communities assembled naturally on standardized substrate while experiencing distinct levels of biomass removal (no removal, low disturbance, and high disturbance), which opened space for new colonizers, thereby providing a pulse of limited resource to these communities. We then quantified functional (space occupancy and biomass) and compositional recovery from these repeated pulse disturbances across two community assembly timescales (early and late at 3 and 12 months, respectively). We documented latitudinal variation in resilience across 47° latitude, where speed of functional recovery was higher toward lower latitudes yet incomplete at late assembly in the tropics and subtropics. The degree of functional recovery did not coincide with compositional recovery, and regional differences in recruitment and growth likely contributed to functional recovery in these communities. While biogeographic variation in community resilience has been predicted, our results are among the first to examine functional and compositional recovery from disturbance in a single large-scale standardized experiment.
Collapse
Affiliation(s)
- Mariana Bonfim
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Diana P López
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
- Smithsonian Tropical Research Institute, Ancon, Panama
| | - Michele F Repetto
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Amy L Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
- Smithsonian Tropical Research Institute, Ancon, Panama
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
2
|
Freestone AL, Torchin ME, Jurgens LJ, Bonfim M, López DP, Repetto MF, Schlöder C, Sewall BJ, Ruiz GM. Stronger predation intensity and impact on prey communities in the tropics. Ecology 2021; 102:e03428. [PMID: 34105781 DOI: 10.1002/ecy.3428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Abstract
The hypothesis that biotic interactions strengthen toward lower latitudes provides a framework for linking community-scale processes with the macroecological scales that define our biosphere. Despite the importance of this hypothesis for understanding community assembly and ecosystem functioning, the extent to which interaction strength varies across latitude and the effects of this variation on natural communities remain unresolved. Predation in particular is central to ecological and evolutionary dynamics across the globe, yet very few studies explore both community-scale causes and outcomes of predation across latitude. Here we expand beyond prior studies to examine two important components of predation strength: intensity of predation (including multiple dimensions of the predator guild) and impact on prey community biomass and structure, providing one of the most comprehensive examinations of predator-prey interactions across latitude. Using standardized experiments, we tested the hypothesis that predation intensity and impact on prey communities were stronger at lower latitudes. We further assessed prey recruitment to evaluate the potential for this process to mediate predation effects. We used sessile marine invertebrate communities and their fish predators in nearshore environments as a model system, with experiments conducted at 12 sites in four regions spanning the tropics to the subarctic. Our results show clear support for an increase in both predation intensity and impact at lower relative to higher latitudes. The predator guild was more diverse at low latitudes, with higher predation rates, longer interaction durations, and larger predator body sizes, suggesting stronger predation intensity in the tropics. Predation also reduced prey biomass and altered prey composition at low latitudes, with no effects at high latitudes. Although recruitment rates were up to three orders of magnitude higher in the tropics than the subarctic, prey replacement through this process was insufficient to dampen completely the strong impacts of predators in the tropics. Our study provides a novel perspective on the biotic interaction hypothesis, suggesting that multiple components of the predator community likely contribute to predation intensity at low latitudes, with important consequences for the structure of prey communities.
Collapse
Affiliation(s)
- Amy L Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA.,Smithsonian Environmental Research Center, Edgewater, Maryland, 21037-0028, USA.,Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| | - Laura J Jurgens
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA.,Smithsonian Environmental Research Center, Edgewater, Maryland, 21037-0028, USA.,Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| | - Mariana Bonfim
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Diana P López
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Michele F Repetto
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Carmen Schlöder
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Gregory M Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland, 21037-0028, USA
| |
Collapse
|
3
|
Dias GM, Vieira EA, Pestana L, Marques AC, Karythis S, Jenkins SR, Griffith K. Calcareous defence structures of prey mediate the effects of predation and biotic resistance towards the tropics. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gustavo M. Dias
- Centro de Ciências Naturais e Humanas Universidade Federal do ABC São Bernardo do Campo Brazil
| | - Edson A. Vieira
- Centro de Ciências Naturais e Humanas Universidade Federal do ABC São Bernardo do Campo Brazil
- Departamento de Oceanografia e Limnologia Universidade Federal do Rio Grande do Norte Natal Brazil
| | - Lueji Pestana
- Departamento de Zoologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Departamento de Biologia Faculdade de Ciências Universidade Agostinho Neto Luanda Angola
| | - Antonio C. Marques
- Departamento de Zoologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | | | | |
Collapse
|
4
|
Wallingford PD, Sorte CJB. Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere 2019. [DOI: 10.1002/ecs2.2790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Piper D. Wallingford
- Department of Ecology and Evolutionary Biology University of California Irvine California USA
| | - Cascade J. B. Sorte
- Department of Ecology and Evolutionary Biology University of California Irvine California USA
| |
Collapse
|
5
|
Vieira EA, Flores AAV, Dias GM. Persistence and space preemption explain species-specific founder effects on the organization of marine sessile communities. Ecol Evol 2018; 8:3430-3442. [PMID: 29607036 PMCID: PMC5869360 DOI: 10.1002/ece3.3853] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022] Open
Abstract
Community assembly may not follow predictable successional stages, with a large fraction of the species pool constituted by potential pioneering species and successful founders defined through lottery. In such systems, priority effects may be relevant in the determination of trajectories of developing communities and hence diversity and assemblage structure at later advanced states. In order to assess how different founder species may trigger variable community trajectories and structures, we conducted an experimental study using subtidal sessile assemblages as model. We manipulated the identity of functionally different founders and initial colony size (a proxy of the time lag before the arrival of later species), and followed trajectories. We did not observe any effects of colony size on response variables, suggesting that priority effects take place even when the time lag between the establishment of pioneering species and late colonizers is very short. Late community structure at experimental panels that started either with the colonial ascidian Botrylloides nigrum, or the arborescent bryozoan Bugula neritina, was similar to control panels allowed natural assembling. In spite of high potential for fast space domination, and hence negative priority effects, B. nigrum suffered high mortality and did not persist throughout succession. Bugula neritina provided complex physical microhabitats through conspecific clustering that have enhanced larval settlement of late species arrivals, but no apparent facilitation was observed. Differently, panels founded by the encrusting bryozoan Schizoporella errata led to different and less diverse communities compared to naturally assembled panels, evidencing strong negative priority effects through higher persistence and space preemption. Schizoporella errata founder colonies inhibited further conspecific settlement, which may greatly relax intraspecific competition, allowing resource allocation to colony growth and space domination, thus reducing the chances for the establishment of other species.
Collapse
Affiliation(s)
- Edson A Vieira
- Programa de Pós-Graduação em Ecologia Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas Brazil.,Centro de Biologia Marinha Universidade de São Paulo (USP) São Sebastião Brazil
| | - Augusto A V Flores
- Centro de Ciências Naturais e Humanas Universidade Federal do ABC (UFABC) São Bernardo do Campo Brazil
| | - Gustavo M Dias
- Centro de Biologia Marinha Universidade de São Paulo (USP) São Sebastião Brazil
| |
Collapse
|