Heilpern SA, Anujan K, Osuri A, Naeem S. Positive correlations in species functional contributions drive the response of multifunctionality to biodiversity loss.
Proc Biol Sci 2020;
287:20192501. [PMID:
32228411 DOI:
10.1098/rspb.2019.2501]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in biodiversity can severely affect ecosystem functioning, but the impacts of species loss on an ecosystem's ability to sustain multiple functions remain unclear. When considering individual functions, the impacts of biodiversity loss depend on correlations between species functional contributions and their extinction probabilities. When considering multiple functions, the impacts of biodiversity loss depend on correlations between species contributions to individual functions. However, how correlations between extinction probabilities and functional contributions determine the impact of biodiversity loss on multifunctionality (MF) is not well understood. Here, we use biodiversity loss simulations to examine the influence of correlations among multiple functions and extinction probabilities on the diversity-MF relationship. In contrast with random extinction, we find that the response of MF to biodiversity loss is influenced by the absence of positive correlations between species functional contributions, rather than by negative correlations. Communities with a high number of pairwise positive correlations in functional contributions achieve higher levels of MF, but are also less resilient to extinction. This work implies that understanding how species extinction probabilities correlate with their contribution to MF can help identify the degree to which MF will change with ongoing biodiversity loss and target conservation efforts to maximize MF resiliency.
Collapse