1
|
Ritter CD, Forster D, Azevedo JAR, Antonelli A, Nilsson RH, Trujillo ME, Dunthorn M. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. MICROBIAL ECOLOGY 2021; 82:746-760. [PMID: 33604703 PMCID: PMC8463405 DOI: 10.1007/s00248-021-01719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Species may co-occur due to responses to similar environmental conditions, biological associations, or simply because of coincident geographical distributions. Disentangling patterns of co-occurrence and potential biotic and abiotic interactions is crucial to understand ecosystem function. Here, we used DNA metabarcoding data from litter and mineral soils collected from a longitudinal transect in Amazonia to explore patterns of co-occurrence. We compared data from different Amazonian habitat types, each with a characteristic biota and environmental conditions. These included non-flooded rainforests (terra-firme), forests seasonally flooded by fertile white waters (várzeas) or by unfertile black waters (igapós), and open areas associated with white sand soil (campinas). We ran co-occurrence network analyses based on null models and Spearman correlation for all samples and for each habitat separately. We found that one third of all operational taxonomic units (OTUs) were bacteria and two thirds were eukaryotes. The resulting networks were nevertheless mostly composed of bacteria, with fewer fungi, protists, and metazoans. Considering the functional traits of the OTUs, there is a combination of metabolism modes including respiration and fermentation for bacteria, and a high frequency of saprotrophic fungi (those that feed on dead organic matter), indicating a high turnover of organic material. The organic carbon and base saturation indices were important in the co-occurrences in Amazonian networks, whereas several other soil properties were important for the co-exclusion. Different habitats had similar network properties with some variation in terms of modularity, probably associated with flooding pulse. We show that Amazonian microorganism communities form highly interconnected co-occurrence and co-exclusion networks, which highlights the importance of complex biotic and abiotic interactions in explaining the outstanding biodiversity of the region.
Collapse
Affiliation(s)
- Camila Duarte Ritter
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5 S05 R04 H83, D-45141, Essen, Germany.
| | - Dominik Forster
- Department of Ecology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Josue A R Azevedo
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, 69060-000, Brazil
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Micah Dunthorn
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5 S05 R04 H83, D-45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Crespo-Pérez V, Kazakou E, Roubik DW, Cárdenas RE. The importance of insects on land and in water: a tropical view. CURRENT OPINION IN INSECT SCIENCE 2020; 40:31-38. [PMID: 32563991 DOI: 10.1016/j.cois.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Tropical insects are astonishingly diverse and abundant yet receive only marginal scientific attention. In natural tropical settings, insects are involved in regulating and supporting ecosystem services including seed dispersal, pollination, organic matter decomposition, nutrient cycling, herbivory, food webs and water quality, which in turn help fulfill UN Sustainable Development Goals (SDGs). Current and future global changes that affect insect diversity and distribution could disrupt key ecosystem services and impose important threats on ecosystems and human well-being. A significant increase in our knowledge of tropical insect roles in ecosystem processes is thus vital to ensure sustainable development on a rapidly changing planet.
Collapse
Affiliation(s)
- Verónica Crespo-Pérez
- Laboratorio de Entomología, Museo de Zoología QCAZ I, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado: 17-01-2184 Quito, Ecuador.
| | - Elena Kazakou
- CEFE, Univ Montpellier, CNRS, EPHE, Institut Agro, IRD, Université Paul-Valéry Montpellier, Montpellier, France
| | - David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Rafael E Cárdenas
- Laboratorio de Entomología, Museo de Zoología QCAZ I, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado: 17-01-2184 Quito, Ecuador.
| |
Collapse
|