1
|
Liu Q, Yin S, Yi Y. A bacteria-based index of biotic integrity indicates aquatic ecosystem restoration. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100451. [PMID: 39148555 PMCID: PMC11325675 DOI: 10.1016/j.ese.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Intensive ecological interventions have been carried out in highly polluted shallow lakes to improve their environments and restore their ecosystems. However, certain treatments, such as dredging polluted sediment and stocking fish, can impact the aquatic communities, including benthos and fishes. These impacts can alter the composition and characteristics of aquatic communities, which makes community-based ecological assessments challenging. Here we develop a bacteria-based index of biotic integrity (IBI) that can clearly indicate the restoration of aquatic ecosystems with minimal artificial interventions. We applied this method to a restored shallow lake during 3-year intensive ecological interventions. The interventions reduced nutrients and heavy metals by 27.1% and 16.7% in the sediment, while the total organic carbon (TOC) increased by 8.0% due to the proliferation of macrophytes. Additionally, the abundance of sulfur-related metabolic pathways decreased by 10.5% as the responses to improved ecosystem. The score of bacteria-based IBI, which is calculated based on the diversity, composition, and function of benthic bacterial communities, increased from 0.62 in 2018 to 0.81 in 2021. Our study not only provides an applicable method for aquatic ecological assessment under intensive artificial interventions but also extends the application of IBI to complex application scenarios, such as ecosystems with significantly different aquatic communities and comparisons between different basins.
Collapse
Affiliation(s)
- Qi Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Senlu Yin
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Yujun Yi
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Wang H, Wang Z, Yu J, Ma C, Liu L, Xu D, Zhang J. The function and keystone microbiota in typical habitats under the influence of anthropogenic activities in Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2024; 247:118196. [PMID: 38253195 DOI: 10.1016/j.envres.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Microbe is an essential driver in regulating the biochemical cycles of carbon, nitrogen, and sulfur. In freshwater lake, microbial communities and functions are influenced by multiple factors, especially anthropogenic activities. Baiyangdian Lake consisted of various habitats, and was frequently interfered with human activities. In this study, 16 S rRNA sequencing and metagenomic sequencing were performed to characterize the microbial communities, determine keystone taxa and reveal dominated metabolic functions in typical habitats in Baiyangdian Lake. The results showed that the diversity of microbial community was significantly higher in sediment compared with corresponding water sample. Microbial community showed strong spatial heterogeneity in sediment, and temporal heterogeneity in water. As for different habitats, significantly higher alpha diversity was observed in ecotone, where the interference of human activities was relatively weak. The shared OTUs were distinguished from the keystone taxa, which indicated the uniqueness of microbiota in different ecological habitat. Moreover, the interactions of microbial in ecological restoration area (abandoned fish pond) were relatively simple, suggesting that this ecosystem was relatively fragile compared with others. Based on the metagenomic sequencing, we recognized that the canal, open water, and abandoned fish pond were beneficial for methanogenic and the ecotone might be a hot zone for the oxidation of methane. Notably, most of the microbes that participated in these predominant metabolisms were unclassified, which indicated the hug potential for exploring functional microorganisms in Baiyangdian Lake. This study provided a comprehensive understanding of the ecology characteristics of microbiota in habitats undergoing various human interference in Baiyangdian Lake.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Zhixin Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Dong Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Liu Q, Pang Z, Yang Z, Nyumah F, Hu C, Lin W, Yuan Z. Bio-fertilizer Affects Structural Dynamics, Function, and Network Patterns of the Sugarcane Rhizospheric Microbiota. MICROBIAL ECOLOGY 2022; 84:1195-1211. [PMID: 34820729 PMCID: PMC9747866 DOI: 10.1007/s00248-021-01932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
Fertilizers and microbial communities that determine fertilizer efficiency are key to sustainable agricultural development. Sugarcane is an important sugar cash crop in China, and using bio-fertilizers is important for the sustainable development of China's sugar industry. However, information on the effects of bio-fertilizers on sugarcane soil microbiota has rarely been studied. In this study, the effects of bio-fertilizer application on rhizosphere soil physicochemical indicators, microbial community composition, function, and network patterns of sugarcane were discussed using a high-throughput sequencing approach. The experimental design is as follows: CK: urea application (57 kg/ha), CF: compound fertilizer (450 kg/ha), BF1: bio-fertilizer (1500 kg/ha of bio-fertilizer + 57 kg/ha of urea), and BF2: bio-fertilizer (2250 kg/ha of bio-fertilizer + 57 kg/ha of urea). The results showed that the bio-fertilizer was effective in increasing sugarcane yield by 3-12% compared to the CF treatment group, while reducing soil acidification, changing the diversity of fungi and bacteria, and greatly altering the composition and structure of the inter-root microbial community. Variance partitioning canonical correspondence (VPA) analysis showed that soil physicochemical variables explained 80.09% and 73.31% of the variation in bacteria and fungi, respectively. Redundancy analysis and correlation heatmap showed that soil pH, total nitrogen, and available potassium were the main factors influencing bacterial community composition, while total soil phosphorus, available phosphorus, pH, and available nitrogen were the main drivers of fungal communities. Volcano plots showed that using bio-fertilizers contributed to the accumulation of more beneficial bacteria in the sugarcane rhizosphere level and the decline of pathogenic bacteria (e.g., Leifsonia), which may slow down or suppress the occurrence of diseases. Linear discriminant analysis (LDA) and effect size analysis (LEfSe) searched for biomarkers under different fertilizer treatments. Meanwhile, support vector machine (SVM) assessed the importance of the microbial genera contributing to the variability between fertilizers, of interest were the bacteria Anaerolineace, Vulgatibacter, and Paenibacillus and the fungi Cochliobolus, Sordariales, and Dothideomycetes between CF and BF2, compared to the other genera contributing to the variability. Network analysis (co-occurrence network) showed that the network structure of bio-fertilizers was closer to the network characteristics of healthy soils, indicating that bio-fertilizers can improve soil health to some extent, and therefore if bio-fertilizers can be used as an alternative to chemical fertilizers in the future alternative, it is important to achieve green soil development and improve the climate.
Collapse
Affiliation(s)
- Qiang Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zuli Yang
- Guangxi Laibin Xinbin Commercial Crop Technology Extension Station, Laibin, 546100, Guangxi, China
| | - Fallah Nyumah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugar Industry, Nanning, 530000, China.
| |
Collapse
|
4
|
Shah RM, Stephenson S, Crosswell J, Gorman D, Hillyer KE, Palombo EA, Jones OAH, Cook S, Bodrossy L, van de Kamp J, Walsh TK, Bissett A, Steven ADL, Beale DJ. Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151175. [PMID: 34699819 DOI: 10.1016/j.scitotenv.2021.151175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Vertical zonation within estuarine ecosystems can strongly influence microbial diversity and function by regulating competition, predation, and environmental stability. The degree to which microbial communities exhibit horizontal patterns through an estuary has received comparatively less attention. Here, we take a multi-omics ecosurveillance approach to study environmental gradients created by the transition between dominant vegetation types along a near pristine tropical river system (Wenlock River, Far North Queensland, Australia). The study sites included intertidal mudflats fringed by saltmarsh, mangrove or mixed soft substrata habitats. Collected sediments were analyzed for eukaryotes and prokaryotes using small sub-unit (SSU) rRNA gene amplicons to profile the relative taxonomic composition. Central carbon metabolism metabolites and other associated organic polar metabolites were analyzed using established metabolomics-based approaches, coupled with total heavy metals analysis. Eukaryotic taxonomic information was found to be more informative of habitat type. Bacterial taxonomy and community composition also showed habitat-specificity, with phyla Proteobacteria and Cyanobacteria strongly linked to mangroves and saltmarshes, respectively. In contrast, metabolite profiling was critical for understanding the biochemical pathways and expressed functional outputs in these systems that were tied to predicted microbial gene function (16S rRNA). A high degree of metabolic redundancy was observed in the bacterial communities, with the metabolomics data suggesting varying degrees of metabolic criticality based on habitat type. The predicted functions of the bacterial taxa combined with annotated metabolites accounted for the conservative perspective of microbial community redundancy against the putative metabolic pathway impacts in the metabolomics data. Coupling these data demonstrates that habitat-mediated estuarine gradients drive patterns of community diversity and metabolic function and highlights the real redundancy potential of habitat microbiomes. This information is useful as a point of comparison for these sensitive ecosystems and provides a framework for identifying potentially vulnerable or at-risk systems before they are significantly degraded.
Collapse
Affiliation(s)
- Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sarah Stephenson
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Lucas Heights, NSW 2234, Australia
| | - Joseph Crosswell
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Daniel Gorman
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Stephen Cook
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Berrimah, NT 0828, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Thomas K Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew D L Steven
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia.
| |
Collapse
|