1
|
Lisboa MS, Schneider RL, Rudstam LG, Walter MT. Groundwater inputs could be a significant but often overlooked source of phosphorus in lake ecosystems. Sci Rep 2024; 14:16269. [PMID: 39009683 PMCID: PMC11251285 DOI: 10.1038/s41598-024-66985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Freshwater lakes are severely threatened, due largely to excess inputs of nutrients and other contaminants. Phosphorus (P) is receiving renewed attention due to recent increases in toxic cyanobacteria blooms in lakes worldwide. We investigated groundwater seepage for its role in P loading dynamics at Oneida Lake, New York, USA-one of the most well-studied lakes globally. P loading was measured at representative sites along the 88 km shoreline over three summers by directly measuring groundwater flow using seepage meters and porewater samplers. Groundwater seepage was a continuous and significant source of dissolved P over the summer months, comparable to tributary sources to the lake during that time. This constant input has enriched the concentrations of P in the nearshore surface waters, significantly above levels in the pelagic zone. Pore Total Phosphorus (TP) concentrations and loads reached extremely high values (up to 100 mg/L), with inorganic P representing only ~ 10% of TP per site. Groundwater seepage flows and P loadings were highly variable across space and time, partially explained by adjacent land uses and precipitation. Our research concludes that groundwater seepage is a significant, but overlooked, source of dissolved P and a crucial factor driving summer primary production at Oneida Lake, and likely other temperate lakes.
Collapse
Affiliation(s)
- M Sol Lisboa
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Rebecca L Schneider
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Lars G Rudstam
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
3
|
Anderson LE, DeMont I, Dunnington DD, Bjorndahl P, Redden DJ, Brophy MJ, Gagnon GA. A review of long-term change in surface water natural organic matter concentration in the northern hemisphere and the implications for drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159699. [PMID: 36306839 DOI: 10.1016/j.scitotenv.2022.159699] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Reduced atmospheric acid deposition has given rise to recovery from acidification - defined as increasing pH, acid neutralization capacity (ANC), or alkalinity in surface waters. Strong evidence of recovery has been reported across North America and Europe, driving chemical responses. The primary chemical responses identified in this review were increasing concentration and changing character of natural organic matter (NOM) towards predominantly hydrophobic nature. The concentration of NOM also influenced trace metal cycling as many browning surface waters also reported increases in Fe and Al. Further, climate change and other factors (e.g., changing land use) act in concert with reductions in atmospheric deposition to contribute to widespread browning and will have a more pronounced effect as deposition stabilizes. The observed water quality trends have presented challenges for drinking water treatment (e.g., increased chemical dosing, poor filter operations, formation of disinfection by-products) and many facilities may be under designed as a result. This comprehensive review has identified key research areas to be addressed, including 1) a need for comprehensive monitoring programs (e.g., larger timescales; consistency in measurements) to assess climate change impacts on recovery responses and NOM dynamics, and 2) a better understanding of drinking water treatment vulnerabilities and the transition towards robust treatment technologies and solutions that can adapt to climate change and other drivers of changing water quality.
Collapse
Affiliation(s)
- Lindsay E Anderson
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada.
| | - Isobel DeMont
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | - Dewey D Dunnington
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | - Paul Bjorndahl
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dave J Redden
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | | | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Eklöf K, von Brömssen C, Amvrosiadi N, Fölster J, Wallin MB, Bishop K. Brownification on hold: What traditional analyses miss in extended surface water records. WATER RESEARCH 2021; 203:117544. [PMID: 34419921 DOI: 10.1016/j.watres.2021.117544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Widespread increases in organic matter (OM) content of surface waters, as measured by color and organic carbon (OC), are a major issue for aquatic ecosystems. Long-term monitoring programs revealed the issue of "brownification", with climate change, land cover changes and recovery from acidification all suspected to be major drivers or contributing factors. While many studies have focused on the impact and drivers, fewer have followed up on whether brownification is continuing. As time-series of OM data lengthen, conventional data-analysis approaches miss important information on when changes occur. To better identify temporal OM patterns during three decades (1990-2020) of systematic monitoring, we used generalized additive models to analyze 164 time-series from watercourses located across Sweden. Increases in OC that were widespread during 1990-2010 ceased a decade ago, and most color increases ceased 20 years ago. These findings highlight the need to reassess the understanding of brownification's spatial and temporal extent, as well as the tools used to analyze lengthening time series.
Collapse
Affiliation(s)
- Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden.
| | - Claudia von Brömssen
- Department of Energy and Technology, Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Nino Amvrosiadi
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; Department of Bioeconomy and Health, Research Institutes of Sweden, Uppsala SE-75651, Sweden
| | - Jens Fölster
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Marcus B Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|