1
|
Garbowski M, Laughlin DC, Blumenthal DM, Sofaer HR, Barnett DT, Beaury EM, Buonaiuto DM, Corbin JD, Dukes JS, Early R, Nebhut AN, Petri L, Vilà M, Pearse IS. Naturalized species drive functional trait shifts in plant communities. Proc Natl Acad Sci U S A 2024; 121:e2403120121. [PMID: 39298470 PMCID: PMC11459196 DOI: 10.1073/pnas.2403120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.
Collapse
Affiliation(s)
- Magda Garbowski
- Botany Department, University of Wyoming, Laramie, WY82071
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM88003
| | | | - Dana M. Blumenthal
- U.S. Department of Agriculture, Agricultural Research Service, Fort Collins, CO80526
| | - Helen R. Sofaer
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hilo, HI96718
| | | | - Evelyn M. Beaury
- Department of Ecology and Evolution and the High Meadows Environmental Institute, Princeton University, Princeton, NJ08544
| | - Daniel M. Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA01003
- North East Climate Adaptation Science Center, U.S. Geological Survey, Amherst, MA01003
| | - Jeffrey D. Corbin
- Department of Biological Sciences, Union College, Schenectady, NY12308
| | - Jeffrey S. Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA94305
| | - Regan Early
- Department of Biosciences, University of Exeter, CornwallEX4 4QD, UK
| | | | - Laís Petri
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Montserrat Vilà
- Estación Biológica de Doñana, Spanish National Research Council, Sevilla41092, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla41092, Spain
| | - Ian S. Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO80526
| |
Collapse
|
2
|
Lucero JE, Filazzola A, Callaway RM, Braun J, Ghazian N, Haas S, Miguel MF, Owen M, Seifan M, Zuliani M, Lortie CJ. Increasing global aridity destabilizes shrub facilitation of exotic but not native plant species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Garbowski M, Johnston DB, Brown CS. Cultivars of popular restoration grass developed for drought do not have higher drought resistance and do not differ in drought‐related traits from other accessions. Restor Ecol 2021. [DOI: 10.1111/rec.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magda Garbowski
- Graduate Degree Program in Ecology Colorado State University, 102 Johnson Hall, Fort Collins, CO, 80523, U.S.A
- Department of Agricultural Biology Colorado State University, 307 University Ave., Fort Collins, CO, 80521, U.S.A
| | - Danielle B. Johnston
- Colorado Division of Parks and Wildlife, 711 Independent Ave., Grand Junction, CO, 81505, U.S.A
| | - Cynthia S. Brown
- Graduate Degree Program in Ecology Colorado State University, 102 Johnson Hall, Fort Collins, CO, 80523, U.S.A
- Department of Agricultural Biology Colorado State University, 307 University Ave., Fort Collins, CO, 80521, U.S.A
| |
Collapse
|