D’Andrea R, Gibbs T, O’Dwyer JP. Emergent neutrality in consumer-resource dynamics.
PLoS Comput Biol 2020;
16:e1008102. [PMID:
32730245 PMCID:
PMC7446820 DOI:
10.1371/journal.pcbi.1008102]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 08/24/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022] Open
Abstract
Neutral theory assumes all species and individuals in a community are ecologically equivalent. This controversial hypothesis has been tested across many taxonomic groups and environmental contexts, and successfully predicts species abundance distributions across multiple high-diversity communities. However, it has been critiqued for its failure to predict a broader range of community properties, particularly regarding community dynamics from generational to geological timescales. Moreover, it is unclear whether neutrality can ever be a true description of a community given the ubiquity of interspecific differences, which presumably lead to ecological inequivalences. Here we derive analytical predictions for when and why non-neutral communities of consumers and resources may present neutral-like outcomes, which we verify using numerical simulations. Our results, which span both static and dynamical community properties, demonstrate the limitations of summarizing distributions to detect non-neutrality, and provide a potential explanation for the successes of neutral theory as a description of macroecological pattern.
The neutral theory of biodiversity assumes that species are ecologically equivalent. Given the natural history observation of ubiquitous phenotypic differences between species, it is surprising that neutral theory has successfully predicted a broad range of biodiversity patterns, and simultaneously unsurprising that these results have not convinced ecologists that the natural world is neutral. However, we have lacked a description of how neutrality can emerge in a natural way from ecological mechanisms and species differences. Our study sheds light on this question, providing a theoretical backdrop for the success of neutral theory as a description of macroecological pattern. We derive a prediction for the degree to which consumers must differ in preferences for different resources before the resulting biodiversity patterns become distinguishable from neutrality. These predictions, which we confirm using simulations, show that neutral-like outcomes are possible even when resource requirements across consumers are very far from neutral. Our results can be tested in experimental microbial communities, where, equipped with an inferred consumption network, our analysis can yield predictions for biodiversity patterns and community turnover at different taxonomic levels.
Collapse