Patalas-Maliszewska J, Pajak I, Krutz P, Pajak G, Rehm M, Schlegel H, Dix M. Inertial Sensor-Based Sport Activity Advisory System Using Machine Learning Algorithms.
SENSORS (BASEL, SWITZERLAND) 2023;
23:1137. [PMID:
36772178 PMCID:
PMC9921394 DOI:
10.3390/s23031137]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to develop a physical activity advisory system supporting the correct implementation of sport exercises using inertial sensors and machine learning algorithms. Specifically, three mobile sensors (tags), six stationary anchors and a system-controlling server (gateway) were employed for 15 scenarios of the series of subsequent activities, namely squats, pull-ups and dips. The proposed solution consists of two modules: an activity recognition module (ARM) and a repetition-counting module (RCM). The former is responsible for extracting the series of subsequent activities (so-called scenario), and the latter determines the number of repetitions of a given activity in a single series. Data used in this study contained 488 three defined sport activity occurrences. Data processing was conducted to enhance performance, including an overlapping and non-overlapping window, raw and normalized data, a convolutional neural network (CNN) with an additional post-processing block (PPB) and repetition counting. The developed system achieved satisfactory accuracy: CNN + PPB: non-overlapping window and raw data, 0.88; non-overlapping window and normalized data, 0.78; overlapping window and raw data, 0.92; overlapping window and normalized data, 0.87. For repetition counting, the achieved accuracies were 0.93 and 0.97 within an error of ±1 and ±2 repetitions, respectively. The archived results indicate that the proposed system could be a helpful tool to support the correct implementation of sport exercises and could be successfully implemented in further work in the form of web application detecting the user's sport activity.
Collapse