1
|
Caminero-Saldaña C, Correa-Cuadros JP, Baños-Herrero A, Riquelme C, Pallavicini Y, Fernández-Villán M, Plaza J, Pérez-Sánchez R, Sánchez N, Mougeot F, Luque-Larena JJ, Jaksic FM, García-Ariza MC. Exploring the influence of density-dependence and weather on the spatial and temporal variation in common vole (Microtus arvalis) abundance in Castilla y León, NW Spain. PEST MANAGEMENT SCIENCE 2024; 80:5527-5536. [PMID: 38153883 DOI: 10.1002/ps.7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The common vole has invaded the agroecosystems of northwestern Spain, where outbreaks cause important crop damage and management costs. Little is yet known about the factors causing or modulating vole fluctuations. Here, we used 11 years of vole abundance monitoring data in 40 sites to study density-dependence and weather influence on vole dynamics. Our objective was to identify the population dynamics structure and determine whether there is direct or delayed density-dependence. An evaluation of climatic variables followed, to determine whether they influenced vole population peaks. RESULTS First- and second-order outbreak dynamics were detected at 7 and 33 study sites, respectively, together with second-order variability in periodicity (2-3 to 4-5-year cycles). Vole population growth was explained by previous year abundance (mainly numbers in summer and spring) at 21 of the sites (52.5%), by weather variables at 11 sites (27.5%; precipitation or temperature in six and five sites, respectively), and by a combination of previous abundance and weather variables in eight sites (20%). CONCLUSIONS We detected variability in vole spatiotemporal abundance dynamics, which differs in cyclicity and period. We also found regional variation in the relative importance of previous abundances and weather as factors modulating vole fluctuations. Most vole populations were cyclical, with variable periodicity across the region. Our study is a first step towards the development of predictive modeling, by disclosing relevant factors that might trigger vole outbreaks. It improves decision-making processes within integrated management dealing with mitigation of the agricultural impacts caused by voles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Constantino Caminero-Saldaña
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Jennifer Paola Correa-Cuadros
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Ana Baños-Herrero
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Carlos Riquelme
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Yesica Pallavicini
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Mercedes Fernández-Villán
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Javier Plaza
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Rodrigo Pérez-Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Nilda Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales (Zoología), ETSIIAA, Universidad de Valladolid, Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Palencia, Spain
| | - Fabián M Jaksic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Carmen García-Ariza
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| |
Collapse
|
2
|
Olea PP, de Diego N, García JT, Viñuela J. Habitat type modulates sharp body mass oscillations in cyclic common vole populations. Sci Rep 2024; 14:12013. [PMID: 38797736 PMCID: PMC11128438 DOI: 10.1038/s41598-024-62687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Cyclic rodent populations exhibit pronounced changes in body mass associated with the population cycle phase, long-known as Chitty effect. Although Chitty effect is a common epiphenomenon in both America and Europe, there is still incomplete evidence about the generality of these patterns across the entire range of most species. Moreover, despite decades of research, the underlying factors driving Chitty effect remains poorly understood. Here, we examined the influence of intrinsic and extrinsic factors that may underlie observed patterns in vole size variation in the Iberian common vole Microtus arvalis asturianus. We weighed and measured 2816 adult voles that were captured during 6 trapping periods. Vole numbers and body mass showed strong period- and phase-related variation both in females and males, demonstrating marked Chitty effect in the studied population. Body mass of adult males correlated with body length, evidencing that heavier males are also structurally larger. Statistical models showed that probability of occurrence of large-sized vole (> 37 g) was significantly more likely in reproductive males, during increase and peak phases, and it was modulated by habitat, with crop fields and field margins between crops showing an increased likelihood. We suggest an effect of the habitat on vole body mass mediated by predation.
Collapse
Affiliation(s)
- Pedro P Olea
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Noelia de Diego
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Jesús T García
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Javier Viñuela
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| |
Collapse
|
3
|
Jareño D, Paz Luna A, Viñuela J. Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak. Life (Basel) 2023; 13:1963. [PMID: 37895345 PMCID: PMC10608117 DOI: 10.3390/life13101963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
At the end of the 20th century, the common vole (Microtus arvalis) colonized the practical totality of agricultural ecosystems in the northern sub-plateau of the Iberian Peninsula. To prevent crop damage, chemical control campaigns using anticoagulant rodenticides have been employed. This approach has a high environmental impact, and it has been banned in most countries in the European Union, including Spain. It is therefore essential to analyze alternative methods with lower environmental impacts. Here we explored the efficacy of biological control by avian predators to reduce vole abundance by providing nest-boxes in croplands. We used an indirect index based on the presence/absence of vole activity signs to measure the effect of nest-boxes on common vole abundance. We found that vole abundance was significantly lower near occupied nest-boxes at distances less than 180 m, where vole abundance increases progressively with increasing distance to the nearest nest-box. We also observed that the predatory pressure negatively affects the vole abundance at the end of the breeding period, considering the total number of fledglings. However, the effect of nest-boxes was highly variable depending on the study area and more limited in alfalfa fields, the optimal habitat for voles in agrarian ecosystems. Thus, nest-box supplementation would be a feasible measure for the biological control of the common vole in Mediterranean ecosystems, but it needs improvements for vole control in alfalfa fields within an integrated pest control program. We provide several recommendations to improve the performance of biological control in alfalfa fields.
Collapse
Affiliation(s)
- Daniel Jareño
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC–UCLM–JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain (J.V.)
| | - Alfonso Paz Luna
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), Apdo 11, Majadahonda, 28220 Madrid, Spain
| | - Javier Viñuela
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC–UCLM–JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain (J.V.)
| |
Collapse
|
4
|
Marston C, Raoul F, Rowland C, Quéré JP, Feng X, Lin R, Giraudoux P. Mapping small mammal optimal habitats using satellite-derived proxy variables and species distribution models. PLoS One 2023; 18:e0289209. [PMID: 37590218 PMCID: PMC10434852 DOI: 10.1371/journal.pone.0289209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Small mammal species play an important role influencing vegetation primary productivity and plant species composition, seed dispersal, soil structure, and as predator and/or prey species. Species which experience population dynamics cycles can, at high population phases, heavily impact agricultural sectors and promote rodent-borne disease transmission. To better understand the drivers behind small mammal distributions and abundances, and how these differ for individual species, it is necessary to characterise landscape variables important for the life cycles of the species in question. In this study, a suite of Earth observation derived metrics quantifying landscape characteristics and dynamics, and in-situ small mammal trapline and transect survey data, are used to generate random forest species distribution models for nine small mammal species for study sites in Narati, China and Sary Mogul, Kyrgyzstan. These species distribution models identify the important landscape proxy variables driving species abundance and distributions, in turn identifying the optimal conditions for each species. The observed relationships differed between species, with the number of landscape proxy variables identified as important for each species ranging from 3 for Microtus gregalis at Sary Mogul, to 26 for Ellobius tancrei at Narati. Results indicate that grasslands were predicted to hold higher abundances of Microtus obscurus, E. tancrei and Marmota baibacina, forest areas hold higher abundances of Myodes centralis and Sorex asper, with mixed forest-grassland boundary areas and areas close to watercourses predicted to hold higher abundances of Apodemus uralensis and Sicista tianshanica. Localised variability in vegetation and wetness conditions, as well as presence of certain habitat types, are also shown to influence these small mammal species abundances. Predictive application of the Random Forest (RF) models identified spatial hot-spots of high abundance, with model validation producing R2 values between 0.670 for M. gregalis transect data at Sary Mogul to 0.939 for E. tancrei transect data at Narati. This enhances previous work whereby optimal habitat was defined simply as presence of a given land cover type, and instead defines optimal habitat via a combination of important landscape dynamic variables, moving from a human-defined to species-defined perspective of optimal habitat. The species distribution models demonstrate differing distributions and abundances of host species across the study areas, utilising the strengths of Earth observation data to improve our understanding of landscape and ecological linkages to small mammal distributions and abundances.
Collapse
Affiliation(s)
| | - Francis Raoul
- Department of Chrono-Environment, University of Bourgogne Franche-Comte/CNRS, Besançon, France
| | - Clare Rowland
- UK Centre for Ecology and Hydrology, Lancaster, United Kingdom
| | - Jean-Pierre Quéré
- Centre de Biologie et Gestion des Populations (INRAE/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France
| | - Xiaohui Feng
- WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Patrick Giraudoux
- Department of Chrono-Environment, University of Bourgogne Franche-Comte/CNRS, Besançon, France
- Yunnan University of Finance and Economics, Kunming, China
| |
Collapse
|
5
|
Domínguez JC, Alda F, Calero-Riestra M, Olea PP, Martínez-Padilla J, Herranz J, Oñate JJ, Santamaría A, Viñuela J, García JT. Genetic footprints of a rapid and large-scale range expansion: the case of cyclic common vole in Spain. Heredity (Edinb) 2023; 130:381-393. [PMID: 36966202 PMCID: PMC10238521 DOI: 10.1038/s41437-023-00613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
In the Anthropocene, many species are rapidly shifting their ranges in response to human-driven habitat modifications. Studying patterns and genetic signatures of range shifts helps to understand how species cope with environmental disturbances and predict future shifts in the face of global environmental change. We investigated the genetic signature of a contemporary wide-range expansion observed in the Iberian common vole Microtus arvalis asturianus shortly after a colonization event. We used mtDNA and microsatellite data to investigate patterns of genetic diversity, structure, demography, and gene flow across 57 localities covering the historical range of the species and the newly colonized area. The results showed a genetic footprint more compatible with a true range expansion (i.e. the colonization of previously unoccupied areas), than with a model of "colonization from within" (i.e. local expansions from small, unnoticed populations). Genetic diversity measures indicated that the source population was likely located at the NE of the historical range, with a declining gradient of genetic diversity towards the more recently invaded areas. At the expansion front, we observed the greatest gene flow and smallest pairwise differences between nearby localities. Both natural landscape features (rivers) and recent anthropogenic barriers (roads, railways) explained a large proportion of genetic variance among populations and had a significant impact on the colonization pathways used by voles.
Collapse
Affiliation(s)
- Julio C Domínguez
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071, Ciudad Real, Spain.
- IPE, Pyrenean Institute of Ecology (CSIC), 22700, Avda. Nuestra Señora de la Victoria 16, Jaca, Spain.
| | - Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - María Calero-Riestra
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071, Ciudad Real, Spain
- IPE, Pyrenean Institute of Ecology (CSIC), 22700, Avda. Nuestra Señora de la Victoria 16, Jaca, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG)-Departamento de Ecología, and Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, c/ Darwin, 2, 28049, Madrid, Spain
| | - Jesús Martínez-Padilla
- IPE, Pyrenean Institute of Ecology (CSIC), 22700, Avda. Nuestra Señora de la Victoria 16, Jaca, Spain
| | - Jesús Herranz
- Terrestrial Ecology Group (TEG)-Departamento de Ecología, and Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, c/ Darwin, 2, 28049, Madrid, Spain
| | - Juan José Oñate
- Terrestrial Ecology Group (TEG)-Departamento de Ecología, and Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, c/ Darwin, 2, 28049, Madrid, Spain
| | - Ana Santamaría
- Terrestrial Ecology Group (TEG)-Departamento de Ecología, and Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, c/ Darwin, 2, 28049, Madrid, Spain
| | - Javier Viñuela
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Jesús T García
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
6
|
Vole outbreaks may induce a tularemia disease pit that prevents Iberian hare population recovery in NW Spain. Sci Rep 2023; 13:3898. [PMID: 36890167 PMCID: PMC9995447 DOI: 10.1038/s41598-023-30651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Iberian hare populations have suffered severe declines during recent decades in Spain. Between 1970 and 1990s, a rapid increase in irrigation crop surface in NW Spain (Castilla-y-León region) was followed by a common vole massive range expansion and complete colonization of lowland irrigated agricultural landscapes from mountainous habitats. The subsequent large cyclic fluctuations in abundance of colonizing common voles have contributed to a periodic amplification of Francisella tularensis, the etiological agent that causes human tularemia outbreaks in the region. Tularemia is a fatal disease to lagomorphs, so we hypothesize that vole outbreaks would lead to disease spill over to Iberian hares, increasing prevalence of tularemia and declines among hare populations. Here we report on the possible effects that vole abundance fluctuations and concomitant tularemia outbreaks had on Iberian hare populations in NW Spain. We analysed hare hunting bag data for the region, which has been recurrently affected by vole outbreaks between 1996 and 2019. We also compiled data on F. tularensis prevalence in Iberian hares reported by the regional government between 2007 and 2016. Our results suggest that common vole outbreaks may limit the recovery of hare populations by amplifying and spreading tularemia in the environment. The recurrent rodent-driven outbreaks of tularemia in the region may result in a "disease pit" to Iberian hares: at low host densities, the rate of population growth in hares is lower than the rate at which disease-induced mortality increases with increased rodent host density, therefore, keeping hare populations on a low-density equilibrium. We highlight future research needs to clarify tularemia transmission pathways between voles and hares and confirm a disease pit process.
Collapse
|
7
|
Emery SE, Klapwijk M, Sigvald R, Bommarco R, Lundin O. Cold winters drive consistent and spatially synchronous 8-year population cycles of cabbage stem flea beetle. J Anim Ecol 2023; 92:594-605. [PMID: 36484622 DOI: 10.1111/1365-2656.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Population cycles have been observed in mammals as well as insects, but consistent population cycling has rarely been documented in agroecosystems and never for a beetle. We analysed the long-term population patterns of the cabbage stem flea beetle Psylliodes chrysocephala in winter oilseed rape over 50 years. Psylliodes chrysocephala larval density from 3045 winter oilseed rape fields in southern Sweden showed strong 8-year population cycles in regional mean density. Fluctuations in larval density were synchronous over time across five subregional populations. Subregional mean environmental variables explained 90.6% of the synchrony in P. chrysocephala populations at the 7-11 year time-scale. The number of days below -10°C showed strong anti-phase coherence with larval densities in the 7-11 year time-scale, such that more cold days resulted in low larval densities. High levels of the North Atlantic Oscillation weather system are coherent and anti-phase with cold weather in Scania, Sweden. At the field-scale, later crop planting date and more cold winter days were associated with decreased overwintering larval density. Warmer autumn temperatures, resulting in greater larval accumulated degree days early in the season, increased overwintering larval density. Despite variation in environmental conditions and crop management, 8-year cycles persisted for cabbage stem flea beetle throughout the 50 years of data collection. Moran effects, influenced by the North Atlantic Oscillation weather patterns, are the primary drivers of this cycle and synchronicity. Insect pest data collected in commercial agriculture fields is an abundant source of long-term data. We show that an agricultural pest can have the same periodic population cycles observed in perennial and unmanaged ecosystems. This unexpected finding has implications for sustainable pest management in agriculture and shows the value of long-term pest monitoring projects as an additional source of time-series data to untangle the drivers of population cycles.
Collapse
Affiliation(s)
- Sara E Emery
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Wildlife Fish and Conservation Biology, University of California Davis, Davis, California, USA
| | - Maartje Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roland Sigvald
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Lundin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Barg A, MacPherson J, Caravaggi A. Spatial and temporal trends in western polecat road mortality in Wales. PeerJ 2022; 10:e14291. [PMID: 36518279 PMCID: PMC9744138 DOI: 10.7717/peerj.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Roads have considerable ecological effects that threaten the survival of some species, including many terrestrial carnivores. The western polecat is a small-medium sized mustelid native to Asia and Europe, including Britain where its historical stronghold is in Wales. Polecats are frequently killed on roads and road casualties represent the most common source of data on the species in the UK. However, little is known about the factors that increase the risk of collision. We used Generalized Additive Models to explore seasonal patterns in collisions as well as using Principal Component Analysis and regression modelling to identify landscape characteristics associated with polecat road casualties in Wales. Polecat road casualties had a bimodal distribution, occurring most frequently in March and October. Casualties were more frequently associated with road density, traffic volume, presence of rabbits, habitat patchiness and the abundance of proximal improved grassland habitat. Casualties were negatively associated with elevation and the abundance of semi-natural grassland habitat. The results of this study provide a framework for understanding and mitigating the impacts of roads on polecats in their historic stronghold, hence has considerable value to polecat conservation as well as broader applicability to ecologically similar species.
Collapse
Affiliation(s)
- Allison Barg
- Biological and Forensic Sciences, University of South Wales, Pontypridd, Wales, United Kingdom
- School of Natural Resources, University of Nebraska—Lincoln, Lincoln, NE, United States of America
| | | | - Anthony Caravaggi
- Biological and Forensic Sciences, University of South Wales, Pontypridd, Wales, United Kingdom
| |
Collapse
|
9
|
Fernandez-de-Simon J, Díaz-Ruiz F, Jareño D, Domínguez JC, Lima-Barbero JF, de Diego N, Santamaría AE, Herrero-Villar M, Camarero PR, Olea PP, García JT, Mateo R, Viñuela J. Weasel exposure to the anticoagulant rodenticide bromadiolone in agrarian landscapes of southwestern Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155914. [PMID: 35569667 DOI: 10.1016/j.scitotenv.2022.155914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Bromadiolone is an anticoagulant rodenticide (AR) commonly used as a plant protection product (PPP) against rodent pests in agricultural lands. ARs can be transferred trophically to predators/scavengers when they consume intoxicated live or dead rodents. ARs exposure in weasels Mustela nivalis, small mustelids specialized on rodent predation, is poorly known in southern Europe. Moreover, in this species there is no information on bioaccumulation of AR diastereomers e.g., cis- and trans-bromadiolone. Trans-bromadiolone is more persistent in the rodent liver and thus, is expected to have a greater probability of trophic transfer to predators. Here, we report on bromadiolone occurrence, total concentrations and diastereomers proportions (trans- and cis-bromadiolone) in weasels from Castilla y León (north-western Spain) collected in 2010-2017, where bromadiolone was irregularly applied to control outbreaks of common voles Microtus arvalis mainly with cereal grain bait distributed by the regional government. We also tested variables possibly associated with bromadiolone occurrence and concentration, such as individual features (e.g., sex), spatio-temporal variables (e.g., year), and exposure risk (e.g., vole outbreaks). Overall bromadiolone occurrence in weasels was 22% (n = 32, arithmetic mean of concentration of bromadiolone positives = 0.072 mg/kg). An individual showed signs of bromadiolone intoxication (i.e., evidence of macroscopic hemorrhages or hyperaemia and hepatic bromadiolone concentration > 0.1 mg/kg). All the exposed weasels (n = 7) showed only trans-bromadiolone diastereomer in liver, whilst a single analyzed bait from those applied in Castilla y León contained trans- and cis-bromadiolone at 65/35%. Bromadiolone occurrence and concentration in weasels varied yearly. Occurrence was higher in 2012 (100% of weasels), when bromadiolone was widely distributed, compared to 2016-2017 (2016: 20%; 2017: 8.33%) when bromadiolone was exceptionally permitted. The highest concentrations happened in 2014 and 2017, both years with vole outbreaks. Our findings indicate that specialist rodent predators could be exposed to bromadiolone in areas and periods with bromadiolone treatments against vole outbreaks.
Collapse
Affiliation(s)
- Javier Fernandez-de-Simon
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; DITEG Research Group, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n., 45071 Toledo, Spain.
| | - Francisco Díaz-Ruiz
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Biogeography, Diversity, and Conservation Research Team, Dept. Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Jareño
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Julio C Domínguez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - José F Lima-Barbero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Sabiotec, Camino de Moledores s/n., 13071 Ciudad Real, Spain
| | - Noelia de Diego
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Ana E Santamaría
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| | - Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Univ. Autónoma de Madrid, Madrid, Spain
| | - Jesús T García
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Javier Viñuela
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| |
Collapse
|
10
|
Roos D, Caminero-Saldaña C, Elston D, Mougeot F, García-Ariza MC, Arroyo B, Luque-Larena JJ, Revilla FJR, Lambin X. From pattern to process? Dual travelling waves, with contrasting propagation speeds, best describe a self-organised spatio-temporal pattern in population growth of a cyclic rodent. Ecol Lett 2022; 25:1986-1998. [PMID: 35908289 PMCID: PMC9543711 DOI: 10.1111/ele.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
The dynamics of cyclic populations distributed in space result from the relative strength of synchronising influences and the limited dispersal of destabilising factors (activators and inhibitors), known to cause multi‐annual population cycles. However, while each of these have been well studied in isolation, there is limited empirical evidence of how the processes of synchronisation and activation–inhibition act together, largely owing to the scarcity of datasets with sufficient spatial and temporal scale and resolution. We assessed a variety of models that could be underlying the spatio‐temporal pattern, designed to capture both theoretical and empirical understandings of travelling waves using large‐scale (>35,000 km2), multi‐year (2011–2017) field monitoring data on abundances of common vole (Microtus arvalis), a cyclic agricultural rodent pest. We found most support for a pattern formed from the summation of two radial travelling waves with contrasting speeds that together describe population growth rates across the region.
Collapse
Affiliation(s)
- Deon Roos
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Área de Plagas, Instituto Tecnológico Agrario de Castilla-y-León (ITACyL), Valladolid, Spain
| | | | - David Elston
- Biomathematics & Statistics Scotland, Aberdeen, UK
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Beatriz Arroyo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | | | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
11
|
Fauteux D, Gauthier G. Density-dependent demography and movements in a cyclic brown lemming population. Ecol Evol 2022; 12:e9055. [PMID: 35813905 PMCID: PMC9251844 DOI: 10.1002/ece3.9055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Theoretical modeling predicts that both direct and delayed density-dependence are key factors to generate population cycles. Deciphering density-dependent processes that lead to variable population growth characterizing different phases of the cycles remains challenging. This is particularly the case for the period of prolonged low densities, which is inherently data deficient. However, demographic analyses based on long-term capture-mark-recapture datasets can help resolve this question. We relied on a 16-year (2004-2019) live-trapping program to analyze the summer demography and movements of a cyclic brown lemming population in the Canadian Arctic. More specifically, we examined if inversely density-dependent processes could explain why population growth can remain low during the prolonged low phase. We found that the proportion of females in the population was inversely density-dependent with a strong male-biased sex ratio at low densities but not at high densities. However, survival of adult females was higher than adult males, but both had lower survival at low densities than at high ones. Distances moved by both adult males and females were density-dependent, and proportion of females in reproductive condition was weakly density-dependent as it tended to increase at low density. Individual body condition, measured as monthly change in body mass, was not density-dependent. Overall, the strong male-biased sex ratio at very low densities suggests a loss of reproductive potential due to the rarity of females and appears to be the most susceptible demographic factor that could contribute to the prolonged low phase in cyclic brown lemmings. What leads to this sex-bias in the first place is still unclear, potentially owing to our trapping period limited to the summer, but we suggest that it could be due to high predation rate on breeding females in winter.
Collapse
Affiliation(s)
- Dominique Fauteux
- Canadian Museum of NatureOttawaOntarioCanada
- Centre d'Études Nordiques and Université LavalQuébecQuébecCanada
| | - Gilles Gauthier
- Centre d'Études Nordiques and Université LavalQuébecQuébecCanada
| |
Collapse
|
12
|
Herrero-Cófreces S, Mougeot F, Lambin X, Luque-Larena JJ. Linking Zoonosis Emergence to Farmland Invasion by Fluctuating Herbivores: Common Vole Populations and Tularemia Outbreaks in NW Spain. Front Vet Sci 2021; 8:698454. [PMID: 34458354 PMCID: PMC8397442 DOI: 10.3389/fvets.2021.698454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The expansion and intensification of agriculture are driving profound changes in ecosystems worldwide, favoring the (re)emergence of many human infectious diseases. Muroid rodents are a key host group for zoonotic infectious pathogens and frequently invade farming environments, promoting disease transmission and spillover. Understanding the role that fluctuating populations of farm dwelling rodents play in the epidemiology of zoonotic diseases is paramount to improve prevention schemes. Here, we review a decade of research on the colonization of farming environments in NW Spain by common voles (Microtus arvalis) and its public health impacts, specifically periodic tularemia outbreaks in humans. The spread of this colonizing rodent was analogous to an invasion process and was putatively triggered by the transformation and irrigation of agricultural habitats that created a novel terrestrial-aquatic interface. This irruptive rodent host is an effective amplifier for the Francisella tularensis bacterium during population outbreaks, and human tularemia episodes are tightly linked in time and space to periodic (cyclic) variations in vole abundance. Beyond the information accumulated to date, several key knowledge gaps about this pathogen-rodent epidemiological link remain unaddressed, namely (i) did colonizing vole introduce or amplified pre-existing F. tularensis? (ii) which features of the “Francisella—Microtus” relationship are crucial for the epidemiology of tularemia? (iii) how virulent and persistent F. tularensis infection is for voles under natural conditions? and (iv) where does the bacterium persist during inter-epizootics? Future research should focus on more integrated, community-based approaches in order to understand the details and dynamics of disease circulation in ecosystems colonized by highly fluctuating hosts.
Collapse
Affiliation(s)
- Silvia Herrero-Cófreces
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| | - François Mougeot
- Grupo de Gestión de Recursos Cinegéticos y Fauna Silvestre, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| |
Collapse
|
13
|
Dominguez JC, Calero-Riestra M, Olea PP, Malo JE, Burridge CP, Proft K, Illanas S, Viñuela J, García JT. Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures. Sci Rep 2021; 11:12534. [PMID: 34131199 PMCID: PMC8206325 DOI: 10.1038/s41598-021-91824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3-5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing "boom-bust" dynamics.
Collapse
Affiliation(s)
- Julio C Dominguez
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain.
| | - María Calero-Riestra
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Juan E Malo
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Kirstin Proft
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Sonia Illanas
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Javier Viñuela
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Jesús T García
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| |
Collapse
|
14
|
González-Barrio D, Jado I, Viñuela J, García JT, Olea PP, Arce F, Ruiz-Fons F. Investigating the Role of Micromammals in the Ecology of Coxiella burnetii in Spain. Animals (Basel) 2021; 11:654. [PMID: 33801164 PMCID: PMC8000606 DOI: 10.3390/ani11030654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Coxiella burnetii, the causal agent of human Q fever and animal Coxiellosis, is a zoonotic infectious bacterium with a complex ecology that results from its ability to replicate in multiple (in)vertebrate host species. Spain notifies the highest number of Q fever cases to the ECDC annually and wildlife plays a relevant role in C. burnetii ecology in the country. However, the whole picture of C. burnetii hosts is incomplete, so this study seeks to better understand the role of micromammals in C. burnetii ecology in the country. Spleen samples from 816 micromammals of 10 species and 130 vaginal swabs from Microtus arvalis were analysed by qPCR to detect C. burnetii infection and shedding, respectively. The 9.7% of the spleen samples were qPCR positive. The highest infection prevalence (10.8%) was found in Microtus arvalis, in which C. burnetii DNA was also detected in 1 of the 130 vaginal swabs (0.8%) analysed. Positive samples were also found in Apodemus sylvaticus (8.7%), Crocidura russula (7.7%) and Rattus rattus (6.4%). Positive samples were genotyped by coupling PCR with reverse line blotting and a genotype II+ strain was identified for the first time in one of the positive samples from M. arvalis, whereas only partial results could be obtained for the rest of the samples. Acute Q fever was diagnosed in one of the researchers that participated in the study, and it was presumably linked to M. arvalis handling. The results of the study are consistent with previous findings suggesting that micromammals can be infected by C. burnetii. Our findings additionally suggest that micromammals may be potential sources to trace back the origin of human Q fever and animal Coxiellosis cases in Europe.
Collapse
Affiliation(s)
- David González-Barrio
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.V.); (J.T.G.)
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain
- Viral Hepatitis Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain
| | - Isabel Jado
- Special Pathogens Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain;
| | - Javier Viñuela
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.V.); (J.T.G.)
| | - Jesús T. García
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.V.); (J.T.G.)
| | - Pedro P. Olea
- Departamento de Ecología, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Arce
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7004, Australia;
| | - Francisco Ruiz-Fons
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.V.); (J.T.G.)
| |
Collapse
|
15
|
Herrero-Cófreces S, Flechoso MF, Rodríguez-Pastor R, Luque-Larena JJ, Mougeot F. Patterns of flea infestation in rodents and insectivores from intensified agro-ecosystems, Northwest Spain. Parasit Vectors 2021; 14:16. [PMID: 33407813 PMCID: PMC7789319 DOI: 10.1186/s13071-020-04492-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fleas frequently infest small mammals and play important vectoring roles in the epidemiology of (re)emerging zoonotic disease. Rodent outbreaks in intensified agro-ecosystems of North-West Spain have been recently linked to periodic zoonotic diseases spillover to local human populations. Obtaining qualitative and quantitative information about the composition and structure of the whole flea and small mammal host coexisting communities is paramount to understand disease transmission cycles and to elucidate the disease-vectoring role of flea species. The aims of this research were to: (i) characterise and quantify the flea community parasiting a small mammal guild in intensive farmlands in North-West Spain; (ii) determine and evaluate patterns of co-infection and the variables that may influence parasitological parameters. METHODS We conducted a large-scale survey stratified by season and habitat of fleas parasitizing the small mammal host guild. We report on the prevalence, mean intensity, and mean abundance of flea species parasitizing Microtus arvalis, Apodemus sylvaticus, Mus spretus and Crocidura russula. We also report on aggregation patterns (variance-to-mean ratio and discrepancy index) and co-infection of hosts by different flea species (Fager index) and used generalized linear mixed models to study flea parameter variation according to season, habitat and host sex. RESULTS Three flea species dominated the system: Ctenophthalmus apertus gilcolladoi, Leptopsylla taschenbergi and Nosopsyllus fasciatus. Results showed a high aggregation pattern of fleas in all hosts. All host species in the guild shared C. a. gilcolladoi and N. fasciatus, but L. taschenbergi mainly parasitized mice (M. spretus and A. sylvaticus). We found significant male-biased infestation patterns in mice, seasonal variations in flea abundances for all rodent hosts (M. arvalis, M. spretus and A. sylvaticus), and relatively lower infestation values for voles inhabiting alfalfas. Simultaneous co-infections occurred in a third of all hosts, and N. fasciatus was the most common flea co-infecting small mammal hosts. CONCLUSIONS The generalist N. fasciatus and C. a. gilcolladoi dominated the flea community, and a high percentage of co-infections with both species occurred within the small mammal guild. Nosopsyllus fasciatus may show higher competence of inter-specific transmission, and future research should unravel its role in the circulation of rodent-borne zoonoses.
Collapse
Affiliation(s)
- Silvia Herrero-Cófreces
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Avda. de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | - Manuel Fabio Flechoso
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Avda. de Madrid 44, 34004 Palencia, Spain
- Dpto. Biología Animal (Zoología), Universidad de Salamanca, Campus Unamuno S/N, 37007 Salamanca, Spain
| | - Ruth Rodríguez-Pastor
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Avda. de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Avda. de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
16
|
Weather influences M. arvalis reproduction but not population dynamics in a 17-year time series. Sci Rep 2019; 9:13942. [PMID: 31558762 PMCID: PMC6763496 DOI: 10.1038/s41598-019-50438-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 09/12/2019] [Indexed: 01/14/2023] Open
Abstract
Rodent outbreaks have plagued European agriculture for centuries, but continue to elude comprehensive explanation. Modelling and empirical work in some cyclic rodent systems suggests that changes in reproductive parameters are partly responsible for observed population dynamics. Using a 17-year time series of Microtus arvalis population abundance and demographic data, we explored the relationship between meteorological conditions (temperature and rainfall), female reproductive activity, and population growth rates in a non-cyclic population of this grassland vole species. We found strong but complex relationships between female reproduction and climate variables, with spring female reproduction depressed after cold winters. Population growth rates were, however, uncorrelated with either weather conditions (current and up to three months prior) or with female reproduction (number of foetuses per female and/or proportion of females reproductively active in the population). These results, coupled with age-structure data, suggest that mortality, via predation, disease, or a combination of the two, are responsible for the large multi-annual but non-cyclic population dynamics observed in this population of the common vole.
Collapse
|