1
|
Sablan O, Ford B, Gargulinski E, Hammer MS, Henery G, Kondragunta S, Martin RV, Rosen Z, Slater K, van Donkelaar A, Zhang H, Soja AJ, Magzamen S, Pierce JR, Fischer EV. Quantifying Prescribed-Fire Smoke Exposure Using Low-Cost Sensors and Satellites: Springtime Burning in Eastern Kansas. GEOHEALTH 2024; 8:e2023GH000982. [PMID: 38560558 PMCID: PMC10975953 DOI: 10.1029/2023gh000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0-5.3 μg m-3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.
Collapse
Affiliation(s)
- Olivia Sablan
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Emily Gargulinski
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | - Melanie S. Hammer
- Department of Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Giovanna Henery
- Department of Journalism and Media CommunicationColorado State UniversityFort CollinsCOUSA
| | | | - Randall V. Martin
- Department of Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Zoey Rosen
- Department of Journalism and Media CommunicationColorado State UniversityFort CollinsCOUSA
| | - Kellin Slater
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Aaron van Donkelaar
- Department of Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Hai Zhang
- I.M. Systems Group at NOAACollege ParkMDUSA
| | | | - Sheryl Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
2
|
Hopper GW, Miller EJ, Haag WR, Vaughn CC, Hornbach DJ, Jones JW, Atkinson CL. A test of the loose-equilibrium concept with long-lived organisms: Evaluating temporal change in freshwater mussel assemblages. J Anim Ecol 2024; 93:281-293. [PMID: 38243658 DOI: 10.1111/1365-2656.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
The loose-equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change. Long-lived, slow-growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long-lived animals because they can live >50 years and occur in dense, species-rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers. We used long-term data sets (10-40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC. Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species. Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.
Collapse
Affiliation(s)
- Garrett W Hopper
- School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana, USA
| | - Edwin J Miller
- Kansas Department of Wildlife and Parks, Independence, Kansas, USA
| | - Wendell R Haag
- US Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Frankfort, Kentucky, USA
| | - Caryn C Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Daniel J Hornbach
- Department of Environmental Studies, Macalester College, St. Paul, Minnesota, USA
| | - Jess W Jones
- U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation and Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
3
|
Wenger SJ, Stowe ES, Gido KB, Freeman MC, Kanno Y, Franssen NR, Olden JD, Poff NL, Walters AW, Bumpers PM, Mims MC, Hooten MB, Lu X. Simple statistical models can be sufficient for testing hypotheses with population time-series data. Ecol Evol 2022; 12:e9339. [PMID: 36188518 PMCID: PMC9514214 DOI: 10.1002/ece3.9339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.
Collapse
Affiliation(s)
- Seth J. Wenger
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Keith B. Gido
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Mary C. Freeman
- U.S. Geological Survey Eastern Ecological Science CenterAthensGeorgiaUSA
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - Julian D. Olden
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - N. LeRoy Poff
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Annika W. Walters
- U.S. Geological Survey Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in EcologyUniversity of WyomingLaramieWyomingUSA
| | | | - Meryl C. Mims
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Mevin B. Hooten
- Department of Statistics and Data SciencesThe University of Texas at AustinAustinTexasUSA
| | - Xinyi Lu
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
4
|
Theron KJ, Pryke JS, Samways MJ. Identifying managerial legacies within conservation corridors using remote sensing and grasshoppers as bioindicators. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02496. [PMID: 34783414 DOI: 10.1002/eap.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity conservation under global change requires effective management of key biodiversity areas, even areas not under formal protection. Natural grassland conservation corridors between plantation forests are such areas, as they improve landscape connectivity, mitigate the impact of landscape fragmentation, and conserve biodiversity. However, empirical evidence is required to identify the extent to which past management actions promote effectiveness of conservation corridors into the future. We address this issue using grasshoppers, which are well-established indicators of habitat quality. In particular, we assess grasshopper response within corridors to historic grassland photosynthetic activity using a 25-yr normalized difference vegetation index (NDVI) time series. We then use vegetation characteristics measured in the field to understand the potential mechanisms driving grasshopper response. Furthermore, we explore the efficacy of satellite remote sensing for monitoring grasshopper habitat using additive models. We found that grasshopper evenness responded positively to deviation in NDVI within a 3-yr period, whereas assemblage composition responded positively over a shorter time of two years. Grasshopper richness and evenness responded strongly to the local vegetation height and bare ground, whereas grasshopper assemblage composition also responded to plant species richness. We found a major negative impact of the invasive alien bramble (Rubus cuneifolius) on large-sized grasshoppers and species of conservation concern. Overall, the results illustrate the importance of maintaining primary high-quality habitat for maintaining grasshopper diversity, alongside removal of invasive bramble. We recommend prescribed burning to maintain high-quality habitat heterogeneity, with sites burned within three years. Furthermore, high-resolution satellite imagery is effective for monitoring grasshopper richness and assemblage composition response to changes in vegetation within the corridors. Grassland conservation corridors do conserve biodiversity, although effective management and monitoring needs to be in place to ensure biodiversity resembles that of neighbouring protected areas.
Collapse
Affiliation(s)
- K Jurie Theron
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - James S Pryke
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Michael J Samways
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
5
|
Cazetta TC, Vieira EM. Fire Occurrence Mediates Small-Mammal Seed Removal of Native Tree Species in a Neotropical Savanna. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.793947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seed dispersal and predation are critical processes for plant recruitment which can be affected by fire events. We investigated community composition of small mammals in gallery forests with distinct burning histories (burned or not burned ∼3 years before) in the Cerrado (neotropical savanna). We evaluated the role of these animals as seed removers of six native tree species, potentially mediated by the occurrence of fire. We sampled four previously burned sites and four unburned ones. Seed removal was assessed using two exclusion treatments: exclusive access of small rodents and access of all seed-removing vertebrates. The previous burning changed the structural characteristics of the forests, increasing the density of the understory vegetation and herbaceous cover, which determined differences in species composition, richness, and abundance of small rodents (abundance in the burned forests was 1/6 of the abundance in the unburnt ones). Seed removal rates across the six species were reduced in burnt forests in both treatments and were higher for the “all vertebrates” treatment. Other vertebrates, larger than small rodents, played a significant role as seed removers for five of the six species. The effects of fire were consistent across species, but for the two species with the largest seeds (Hymenaea courbaril and Mauritia flexuosa) removal rates for both treatments were extremely low in the burned forests (≦5%). The observed decline in small rodent seed predation in the burned forests may have medium to long-term consequences on plant communities in gallery forests, potentially affecting community composition and species coexistence in these forests. Moreover, fire caused a sharp decline in seed removal by large mammals, indicating that the maintenance of dispersal services provided by these mammals (mainly the agouti Dasyprota azarae) for the large-seeded species may be jeopardized by the burning of gallery forests. This burning would also affect several small mammal species that occur in the surrounding typical savanna habitats but also use these forests. Fire events have been increasing in frequency and intensity because of human activities and climate changing. This current scenario poses a serious threat considering that these forests are fire-sensitive ecosystems within the Cerrado.
Collapse
|
6
|
Hewitt JE, Bulmer RH, Stephenson F, Thrush SF. Sampling frequency, duration and the Southern Oscillation influence the ability of long-term studies to detect sudden change. GLOBAL CHANGE BIOLOGY 2021; 27:2213-2224. [PMID: 33599051 DOI: 10.1111/gcb.15558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Ecologists have long acknowledged the importance of context dependency related to position along spatial gradients. It is also acknowledged that broad-scale climate patterns can directly and indirectly alter population dynamics. What is not often addressed is whether climate patterns such as the Southern Oscillation interact with population-level temporal patterns and affect the ability of time-series data, such as long-term state of the environment monitoring programmes, to detect change. Monitoring design criteria generally focus on number of data points, sampling frequency and duration, often derived from previous information on species seasonal and multi-year temporal patterns. Our study questioned whether the timing of any changes relative to Southern Oscillation, interacting with species populations dynamics, would also be important. We imposed a series of simulated reductions on macrofaunal abundance data collected regularly over 29 years from two sites, using species selected for observed differences in temporal dynamics. We hypothesized that (1) high within-year sampling frequency would increase detection ability for species with repeatable seasonality cycles and (2) timing of the reduction in abundance relative to the Southern Oscillation was only likely to affect detection ability for long-lived species with multi-year cyclic patterns in abundance. However, regardless of species population dynamics, we found both within-year sampling frequency and the timing of the imposed reduction relative to the Southern Oscillation Index affected detection ability. The latter result, while apparently demonstrating a confounding influence on monitoring, offers the opportunity to improve our ability to detect and interpret analyses of monitoring data, and thus our ability to make recommendations to managers.
Collapse
Affiliation(s)
- Judi E Hewitt
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Richard H Bulmer
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
| | - Fabrice Stephenson
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
| | - Simon F Thrush
- Institute of Marine Studies, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Welti EAR, Joern A, Ellison AM, Lightfoot DC, Record S, Rodenhouse N, Stanley EH, Kaspari M. Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nat Ecol Evol 2021; 5:589-591. [DOI: 10.1038/s41559-021-01424-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022]
|
8
|
Hope AG, Gragg SF, Nippert JB, Combe FJ. Consumer roles of small mammals within fragmented native tallgrass prairie. Ecosphere 2021. [DOI: 10.1002/ecs2.3441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Andrew G. Hope
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Sabrina F. Gragg
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Jesse B. Nippert
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Fraser J. Combe
- Division of Biology Kansas State University Manhattan Kansas USA
| |
Collapse
|
9
|
Liu W, Pennings SC. Variation in synchrony of production among species, sites, and intertidal zones in coastal marshes. Ecology 2020; 102:e03278. [PMID: 33370500 DOI: 10.1002/ecy.3278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 11/05/2022]
Abstract
Spatially synchronous population dynamics are important to ecosystem functioning and have several potential causes. By looking at synchrony in plant productivity over 18 yr across two elevations in three types of coastal marsh habitat dominated by different clonal plant species in Georgia, USA, we were able to explore the importance of plant species and different habitat conditions to synchrony. Synchrony was highest when comparing within a plant species and within a marsh zone, and decreased across species, with increasing distance, and with increasing elevational differences. Abiotic conditions that were measured at individual sites (water column temperature and salinity) also showed high synchrony among sites, and in one case (salinity) decreased with increasing distance among sites. The Moran effect (synchronous abiotic conditions among sites) is the most plausible explanation for our findings. Decreased synchrony between creekbank and mid-marsh zones, and among habitat types (tidal fresh, brackish, and salt marsh) was likely due in part to different exposure to abiotic conditions and in part to variation in sensitivity of dominant plant species to these abiotic conditions. We found no evidence for asynchrony among species, sites or zones, indicating that one habitat type or zone will not compensate for poor production in another during years with low productivity; however, tidal fresh, brackish. and salt marsh sites were also not highly synchronous with each other, which will moderate productivity variation among years at the landscape level due to the portfolio effect. We identified the creekbank zone as more sensitive than the mid-marsh to abiotic variation and therefore as a priority for monitoring and management.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China.,Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| |
Collapse
|
10
|
Rosamond KM, Goded S, Soultan A, Kaplan RH, Glass A, Kim DH, Arcilla N. Not Singing in the Rain: Linking Migratory Songbird Declines With Increasing Precipitation and Brood Parasitism Vulnerability. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.536769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Few empirical studies have quantified relationships between changing weather and migratory songbirds, but such studies are vital in a time of rapid climate change. Climate change has critical consequences for avian breeding ecology, geographic ranges, and migration phenology. Changing precipitation and temperature patterns affect habitat, food resources, and other aspects of birds’ life history strategies. Such changes may disproportionately affect species confined to rare or declining ecosystems, such as temperate grasslands, which are among the most altered and endangered ecosystems globally. We examined the influence of changing weather on the dickcissel (Spiza americana), a migratory songbird of conservation concern that is an obligate grassland specialist. Our study area in the North American Great Plains features high historic weather variability, where climate change is now driving higher precipitation and temperatures as well as higher frequencies of extreme weather events including flooding and droughts. Dickcissels share their breeding grounds with brown-headed cowbirds (Molothrus ater), brood parasites that lay their eggs in the nests of other songbirds, reducing dickcissel productivity. We used 9 years of capture-recapture data collected over an 18-year period to test the hypothesis that increasing precipitation on dickcissels’ riparian breeding grounds is associated with abundance declines and increasing vulnerability to cowbird parasitism. Dickcissels declined with increasing June precipitation, whereas cowbirds, by contrast, increased. Dickcissel productivity appeared to be extremely low, with a 3:1 ratio of breeding male to female dickcissels likely undermining reproductive success. Our findings suggest that increasing precipitation predicted by climate change models in this region may drive future declines of dickcissels and other songbirds. Drivers of these declines may include habitat and food resource loss related to flooding and higher frequency precipitation events as well as increased parasitism pressure by cowbirds. Positive correlations of June-July precipitation, temperature, and time since grazing with dickcissel productivity did not mitigate dickcissels’ declining trend in this ecosystem. These findings highlight the importance of empirical research on the effects of increasing precipitation and brood parasitism vulnerability on migratory songbird conservation to inform adaptive management under climate change.
Collapse
|