1
|
Li C, Chen J, Liao X, Ramus AP, Angelini C, Liu L, Silliman BR, Bertness MD, He Q. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat Commun 2023; 14:8076. [PMID: 38057308 DOI: 10.1038/s41467-023-43951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ecosystem restoration has traditionally focused on re-establishing vegetation and other foundation species at basal trophic levels, with mixed outcomes. Here, we show that threatened shorebirds could be important to restoring coastal wetland multifunctionality. We carried out surveys and manipulative field experiments in a region along the Yellow Sea affected by the invasive cordgrass Spartina alterniflora. We found that planting native plants alone failed to restore wetland multifunctionality in a field restoration experiment. Shorebird exclusion weakened wetland multifunctionality, whereas mimicking higher predation before shorebird population declines by excluding their key prey - crab grazers - enhanced wetland multifunctionality. The mechanism underlying these effects is a simple trophic cascade, whereby shorebirds control crab grazers that otherwise suppress native vegetation recovery and destabilize sediments (via bioturbation). Our findings suggest that harnessing the top-down effects of shorebirds - through habitat conservation, rewilding, or temporary simulation of consumptive or non-consumptive effects - should be explored as a nature-based solution to restoring the multifunctionality of degraded coastal wetlands.
Collapse
Affiliation(s)
- Chunming Li
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jianshe Chen
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aaron P Ramus
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, 28516, USA
| | - Mark D Bertness
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
2
|
Barcelona A, Colomer J, Serra T. Spatial sedimentation and plant captured sediment within seagrass patches. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105997. [PMID: 37099992 DOI: 10.1016/j.marenvres.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/11/2023]
Abstract
Habitat degradation in coastal ecosystems has resulted in the fragmentation of coastal aquatic vegetation and compromised their role in supplying essential ecological services such as trapping sediment or sequestering carbon. Fragmentation has changed seagrass architecture by decreasing the density of the canopy or engendering small patches of vegetated areas. This study aims to quantify the role different patch sizes of vegetation with different canopy densities have in the spatial distribution of sediment within a patch. To this aim, two canopy densities, four different patch lengths, and two wave frequencies were considered. The amounts of sediment deposited onto the bed, captured by plant leaves, remaining in suspension within the canopy, and remaining in suspension above the canopy were used to understand the impact hydrodynamics has on sediment distribution patterns within seagrass patches. In all the cases studied, patches reduced the suspended sediment concentrations, increased the capture of particles in the leaves, and increased the sedimentation rates to the bed. For the lowest wave frequency studied (0.5 Hz), the sediment deposited to the bottom was enhanced at canopy edges, resulting in spatial heterogeneous sedimentation patterns. Therefore, restoration and preservation of coastal aquatic vegetation landscapes can help face future climate change scenarios where an increase in sedimentation can help mitigate predicted sea level rise in coastal areas.
Collapse
Affiliation(s)
- Aina Barcelona
- Department of Physics, University of Girona, 17071, Girona, Spain.
| | - Jordi Colomer
- Department of Physics, University of Girona, 17071, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona, 17071, Girona, Spain
| |
Collapse
|
3
|
Yarnall AH, Byers JE, Yeager LA, Fodrie FJ. Comparing edge and fragmentation effects within seagrass communities: a meta-analysis. Ecology 2021; 103:e3603. [PMID: 34897663 DOI: 10.1002/ecy.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Examining community responses to habitat configuration across scales informs basic and applied models of ecosystem function. Responses to patch-scale edge effects (i.e., ecological differences between patch edges and interiors) are hypothesized to underpin the effects of landscape-scale fragmentation (i.e., mosaics of multi-patch habitat and matrix). Conceptually, this appears justifiable because fragmented habitats typically have a greater proportion of edge than continuous habitats. To critically inspect whether patch-scale edge effects translate consistently (i.e., scale up) into patterns observed in fragmented landscapes, we conducted a meta-analysis on community relationships in seagrass ecosystems to synthesize evidence of edge and fragmentation effects on shoot density, faunal densities, and predation rates. We determined effect sizes by calculating log response ratios for responses within patch edges versus interiors to quantify edge effects, and fragmented versus continuous landscapes to quantify fragmentation effects. We found that both edge and fragmentation effects reduced seagrass shoot densities, although the effect of edge was statistically stronger. In contrast, fauna often exhibited higher densities in patch edges, while fragmentation responses varied directionally across taxa. Fish densities trended higher in patch edges and fragmented landscapes. Benthic fishes responded more positively than benthopelagic fishes to edge effects, though neither guild strongly responded to fragmentation. Invertebrate densities increased in patch edges and trended lower in fragmented landscapes; however, these were small effect sizes due to the offsetting responses of two dominant epifaunal guilds: decapods and smaller crustaceans. Edge and fragmentation affected predation similarly, with prey survival trending lower in patch edges and fragmented landscapes. Overall, several similarities suggest that edge effects conform with patterns of community dynamics in fragmented seagrass. However, across all metrics except fish densities, variability in fragmentation effects was twice that of edge effects. Variance patterns combined with generally stronger responses to edge than fragmentation, warrant caution in unilaterally "scaling up" edge effects to describe fragmentation effects. Rather, fragmentation includes additional factors (e.g., matrix effects, patch number, mean patch size, isolation) that may enhance or offset edge effects. Fragmentation and increased edge are syndromes of habitat degradation, thus this analysis informs mechanistic models of community change in altered terrestrial and marine systems.
Collapse
Affiliation(s)
- Amy H Yarnall
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St., Morehead City, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, Georgia, USA
| | - Lauren A Yeager
- Marine Science Institute, University of Texas at Austin, 750 Channel Drive, Port Aransas, Texas, USA
| | - F Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St., Morehead City, USA
| |
Collapse
|