1
|
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, Muranaka T, Fujitani M, Koizumi Y, Hirata A, Tsubota M, Sekiguchi F, Tan-No K, Kawabata A. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Sci Rep 2024; 14:1039. [PMID: 38200077 PMCID: PMC10781693 DOI: 10.1038/s41598-024-51572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Given possible involvement of the central and peripheral angiotensin system in pain processing, we conducted clinical and preclinical studies to test whether pharmacological inhibition of the angiotensin system would prevent diabetic peripheral neuropathy (DPN) accompanying type 2 diabetes mellitus (T2DM). In the preclinical study, the nociceptive sensitivity was determined in leptin-deficient ob/ob mice, a T2DM model. A clinical retrospective cohort study was conducted, using the medical records of T2DM patients receiving antihypertensives at three hospitals for nearly a decade. In the ob/ob mice, daily treatment with perindopril, an angiotensin-converting enzyme inhibitor (ACEI), or telmisartan, an angiotensin receptor blocker (ARB), but not amlodipine, an L-type calcium channel blocker (CaB), significantly inhibited DPN development without affecting the hyperglycemia. In the clinical study, the enrolled 7464 patients were divided into three groups receiving ACEIs, ARBs and the others (non-ACEI, non-ARB antihypertensives). Bonferroni's test indicated significantly later DPN development in the ARB and ACEI groups than the others group. The multivariate Cox proportional analysis detected significant negative association of the prescription of ACEIs or ARBs and β-blockers, but not CaBs or diuretics, with DPN development. Thus, our study suggests that pharmacological inhibition of the angiotensin system is beneficial to prevent DPN accompanying T2DM.
Collapse
Affiliation(s)
- Shiori Iwane
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Tomoyoshi Miyamoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- School of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Tomonori Hayashi
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Masayuki Tanaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Kazuki Uchitani
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Tatsuya Muranaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Masanori Fujitani
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Atsushi Hirata
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
El-Marasy SA, AbouSamra MM, El-Mosallamy AEMK, Emam AN, Mabrok HB, Galal AF, Ahmed-Farid OA, Abd El-Rahman SS, Moustafa PE. Chrysin loaded nanovesicles ameliorated diabetic peripheral neuropathy. Role of NGF/AKT/GSK-3β pathway. Chem Biol Interact 2023; 375:110402. [PMID: 36804429 DOI: 10.1016/j.cbi.2023.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Chrysin (CHY) has many biological properties but poor oral bioavailability. This study investigates the effect of CHY and CHY-loaded nanovesicles (CHY-NVs) on streptozotocin (STZ)-induced DPN in rats. CHY-NVs were prepared by using film hydration method. The formula with the best entrapment efficiency%, lowest particle size, highest zeta potential, and highest in vitro CHY released profile was selected, characterized by Differential scanning calorimetry, Fourier transformation infrared spectroscopy analysis, and examined by Transmission electron microscope. Acute toxicity test, pharmacokinetic study and experimental model of diabetes mellitus were performed on the selected formulation. Wistar rats were considered diabetic by administration of a single intraperitoneal dose of STZ (50 mg/kg). 48 h after STZ administration, hyperglycemic rats were randomly assigned into four groups, one group of untreated hyperglycemic rats and the other three groups received daily oral doses of unloaded NVs, CHY-NVs (25 mg/kg), and CHY-NVs (50 mg/kg), respectively for 21 days. Moreover, five additional groups of healthy rats received: distilled water (control), free CHY, unloaded NVs, and CHY-NVs respectively for 21 days. CHY and CHY-NVs maintained body weight and reduced STZ-induced behavioral changes in rotarod, hind paw cold allodynia, tail cold allodynia, tail flick, and hot plate tests. CHY and CHY-NVs lowered blood glucose, glycated hemoglobin, elevated serum reduced glutathione (GSH), and reduced plasma malondialdehyde (MDA) levels. CHY-NVs elevated phosphatidylinositol 3-kinase (Pi3k), phosphorylated protein kinase B (p-AKT), and reduced nuclear factor kappa B (NF-κB), interleukin-6 (IL-6) in sciatic nerve homogenate. CHY and CHY-NVs increased nerve growth factor (NGF) and decreased glycogen synthase kinase-3β (GSK-3β) gene expressions in the sciatic nerve. In conclusion, CHY and CHY-NVs ameliorated STZ-induced DPN behavioral and histopathological changes via attenuating hyperglycemia, exerting anti-oxidant, anti-inflammatory effects, activating NGF/p-AKT/GSK-3β pathway, and its anti-apoptotic effect. The best pharmacokinetic profile and therapeutic effect was observed in rats treated with CHY-loaded NVs.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical drug industries research institute, National Research Centre, Giza, Egypt
| | - Aliaa E M K El-Mosallamy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Researches research institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and food science department, Food industries and nutrition research institute, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical and clinical studies research institute, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14040848. [PMID: 35456682 PMCID: PMC9030366 DOI: 10.3390/pharmaceutics14040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Amandine Bernard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- INSERM 1083 CNRS UMR 6015 Mitovasc Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Simon Frachet
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Laurence Richard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Franck Sturtz
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87000 Limoges, France
| | - Laurent Magy
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87000 Limoges, France
| | - Claire Demiot
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Correspondence: ; Tel.: +33-5554-35915
| | - Aurore Danigo
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| |
Collapse
|
4
|
Mojally M, Sharmin E, Alhindi Y, Obaid NA, Almaimani R, Althubiti M, Idris S, Abdelghany AH, Refaat B, Al-Amodi HS, Abdalla AN, Kamel HFM. Hydrogel films of methanolic Mentha piperita extract and silver nanoparticles enhance wound healing in rats with diabetes Type I. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2054607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariam Mojally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eram Sharmin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yosra Alhindi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Najla A. Obaid
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hiba S. Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Uchida M, Ushio S, Niimura T, Takechi K, Kawazoe H, Hidaka N, Tanaka A, Araki H, Zamami Y, Ishizawa K, Kitamura Y, Sendou T, Kawasaki H, Namba H, Shibata K, Tanaka M, Takatori S. Renin-angiotensin-aldosterone system inhibitors prevent the onset of oxaliplatin-induced peripheral neuropathy: A retrospective multicenter study and in vitro evaluation. Biol Pharm Bull 2021; 45:226-234. [PMID: 34803077 DOI: 10.1248/bpb.b21-00852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxaliplatin (OXA) is used in chemotherapy for various cancer types and is associated with acute and chronic neurotoxicity. However, a preventive strategy for OXA-induced peripheral neuropathy (OIPN) and its underlying mechanism remain unclear. We examined the effects of renin-angiotensin-aldosterone system inhibitors (RAASIs) on OIPN by performing a retrospective multicenter study and an in vitro assay. We retrospectively evaluated electronic medical records of 976 patients who underwent one or more courses of OXA-containing regimens at Ehime, Okayama, and Tokushima University Hospitals. The primary endpoint was the incidence of OIPN during or after OXA administration. The effects of RAASIs and OXA on the neurite length in PC12 cells were determined. The combined administration of an OXA-containing regimen and RAASI significantly inhibited the cumulative incidence grade-2 or higher OIPN (log-rank test; P=0.0001). RAASIs markedly suppressed the development of both acute and chronic OIPN (multivariate analysis; P=0.017 and P=0.011). In an in vitro assay, 10 µM OXA suppressed the neurite length; treatment with 1 μM aliskiren, spironolactone, 10 μM candesartan, and enalapril significantly restored neurite length to the control level. Moreover, 1 μM SCH772984 (a selective inhibitor of extracellular signal-regulated kinase, ERK1/2) and 500 μM SQ22536 (a cell-permeable adenylate cyclase [AC] inhibitor) markedly abolished neuroprotective effects of candesartan and enalapril. These results indicate that RAASIs possess preventive or therapeutic effects in acute and chronic OIPN, candesartan and enalapril may directly increase in the activity of ERK1/2 and AC in PC12 cells.
Collapse
Affiliation(s)
- Mami Uchida
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | | | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences.,Department of Pharmacy, Tokushima University Hospital
| | - Kenshi Takechi
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy
| | | | | | | | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences.,Division of Pharmacy, Ehime University Hospital
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences.,Division of Pharmacy, Ehime University Hospital
| | | | | | - Hiromu Kawasaki
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Hiroyuki Namba
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Kazuhiko Shibata
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Mamoru Tanaka
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy
| | - Shingo Takatori
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
6
|
Xu D, Ma X, Sun C, Han J, Zhou C, Chan MTV, Wu WKK. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif 2021; 54:e13139. [PMID: 34623006 PMCID: PMC8666284 DOI: 10.1111/cpr.13139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the somatosensory nervous system. It afflicts about 10% of the general population with a significant proportion of patients’ refractory to conventional medical treatment. This highlights the importance of a better understanding of the molecular pathogenesis of neuropathic pain so as to drive the development of novel mechanism‐driven therapy. Circular RNAs (circRNAs) are a type of non‐coding, regulatory RNAs that exhibit tissue‐ and disease‐specific expression. An increasing number of studies reported that circRNAs may play pivotal roles in the development of neuropathic pain. In this review, we first summarize circRNA expression profiling studies on neuropathic pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, circAnks1a, ciRS‐7, cZRANB1, circZNF609 and circ_0005075) that play key functional roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, prognostic, and therapeutic utilization in the clinical management of neuropathic pain.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|