1
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
3
|
Ji M, Su L, Liu L, Zhuang M, Xiao J, Guan Y, Zhu S, Ma L, Pu H. CaMKII regulates the proteins TPM1 and MYOM2 and promotes diacetylmorphine-induced abnormal cardiac rhythms. Sci Rep 2023; 13:5827. [PMID: 37037889 PMCID: PMC10085977 DOI: 10.1038/s41598-023-32941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Although opioids are necessary for the treatment of acute pain, cancer pain, and palliative care, opioid abuse is a serious threat to society. Heroin (Diacetylmorphine) is the most commonly abused opioid, and it can have a variety of effects on the body's tissues and organs, including the well-known gastrointestinal depression and respiratory depression; however, there is little known about the effects of diacetylmorphine on cardiac damage. Here, we demonstrate that diacetylmorphine induces abnormal electrocardiographic changes in rats and causes damage to cardiomyocytes in vitro by an underlying mechanism of increased autophosphorylation of CaMKII and concomitant regulation of myocardial contractile protein TPM1 and MYOM2 protein expression. The CaMKII inhibitor KN-93 was first tested to rescue the toxic effects of heroin on cardiomyocytes in vitro and the abnormal ECG changes caused by heroin in SD rats, followed by the TMT relative quantitative protein technique to analyze the proteome changes. Diacetylmorphine causes increased phosphorylation at the CaMKII Thr287 site in myocardium, resulting in increased autophosphorylation of CaMKII and subsequent alterations in myocardial contractile proteins, leading to myocardial rhythm abnormalities. These findings provide a theoretical basis for the treatment and prevention of patients with arrhythmias caused by diacetylmorphine inhalation and injection.
Collapse
Affiliation(s)
- Min Ji
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Liping Su
- Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China
| | - Li Liu
- Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China
| | - Mengjie Zhuang
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Jinling Xiao
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Yaling Guan
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Sensen Zhu
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Lijuan Ma
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Hongwei Pu
- Department of Academic Construction, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
4
|
Altered Cellular Protein Quality Control System Modulates Cardiomyocyte Function in Volume Overload-Induced Hypertrophy. Antioxidants (Basel) 2022; 11:antiox11112210. [DOI: 10.3390/antiox11112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Volume-induced hypertrophy is one of the risk factors for cardiac morbidity and mortality. In addition, mechanical and metabolic dysfunction, aging, and cellular redox balance are also contributing factors to the disease progression. In this study, we used volume overload (VO), which was induced by an aortocaval fistula in 2-month-old male Wistar rats, and sham-operated animals served as control. Functional parameters were measured by transthoracic echocardiography at termination 4- or 8-months after VO. The animals showed hypertrophic remodeling that was accompanied by mechanical dysfunction and increased cardiomyocyte stiffness. These alterations were reversible upon treatment with glutathione. Cardiomyocyte dysfunction was associated with elevated oxidative stress markers with unchanged inflammatory signaling pathways. In addition, we observed altered phosphorylation status of small heat shock proteins 27 and 70 and diminished protease expression caspases 3 compared to the matched control group, indicating an impaired protein quality control system. Such alterations might be attributed to the increased oxidative stress as anticipated from the enhanced titin oxidation, ubiquitination, and the elevation in oxidative stress markers. Our study showed an early pathological response to VO, which manifests in cardiomyocyte mechanical dysfunction and dysregulated signaling pathways associated with enhanced oxidative stress and an impaired protein quality control system.
Collapse
|