1
|
Rodríguez JMM, Fonfara S, Hetzel U, Kipar A. Feline hypertrophic cardiomyopathy: reduced microvascular density and involvement of CD34+ interstitial cells. Vet Pathol 2021; 59:269-283. [PMID: 34955067 PMCID: PMC8928422 DOI: 10.1177/03009858211062631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sequence of pathological events in feline hypertrophic cardiomyopathy (fHCM) is still largely unknown, although we know that fHCM is characterized by interstitial remodeling in a macrophage-driven pro-inflammatory environment and that myocardial ischemia might contribute to its progression. This study aimed to gain further insights into the structural changes associated with interstitial remodeling in fHCM with special focus on the myocardial microvasculature and the phenotype of the interstitial cells. Twenty-eight hearts (16 hearts with fHCM and 12 without cardiac disease) were evaluated in the current study, with immunohistochemistry, RNA-in situ hybridization, and transmission electron microscopy. Morphometrical evaluations revealed a statistically significant lower microvascular density in fHCM. This was associated with structural alterations in capillaries that go along with a widening of the interstitium due to the accumulation of edema fluid, collagen fibers, and mononuclear cells that also proliferated locally. The interstitial cells were mainly of fibroblastic or vascular phenotype, with a substantial contribution of predominantly resident macrophages. A large proportion expressed CD34 mRNA, which suggests a progenitor cell potential. Our results indicate that microvascular alterations are key events in the pathogenesis of fHCM and that myocardial interstitial cell populations with CD34+ phenotype play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Josep M Monné Rodríguez
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland.,University of Bern, Bern, Switzerland
| | - Sonja Fonfara
- The Veterinary Cardiac Pathophysiology Consortium.,University of Guelph, Guelph, Ontario, Canada
| | - Udo Hetzel
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- The Veterinary Cardiac Pathophysiology Consortium.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zilberman L, Zalik A, Fugenfirov I, Shimoni S, George J, Goland S. Residual alterations of cardiac and endothelial function in patients who recovered from Takotsubo cardiomyopathy. Clin Cardiol 2021; 44:797-804. [PMID: 33955558 PMCID: PMC8207966 DOI: 10.1002/clc.23604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Takotsubo cardiomyopathy (TCM) is characterized by transient left ventricle dysfunction. Hypothesis A residual cardiac and endothelial dysfunction is present in patients who recovered from TCM. Methods In this single‐center prospective study, patients with prior TCM were included and followed for 6.4 ± 1.6 years. All underwent comprehensive cardiac function assessment, including tissue Doppler imaging (TDI) and 2‐dimensional strain (2DS) echocardiography at their first visit. The number of circulating endothelial progenitor cells and levels of proangiogenic vascular endothelial growth factor (VEGF) and its receptor (VEGF‐R) were measured. All measurements were compared with healthy controls. Results Forty‐two women (age 58. ±8.6 years, LVEF 58.1 ± 6.1%) comprised the TCM group. Patients post‐TCM had significantly lower early velocities E′ (6 (5.0–8.0) vs. 9 (7.0–11.0) cm/s, p = .001) by TDI and higher E/E′ ratio (p = .002), lower LV global average longitudinal strain (LGS) (−18.9 ± 3.5% vs. −21.7 ± 2.3%, p = .002) and RV LGS (−20.1 ± 3.9% vs. −23.4 ± 2.8%, p = .003) were evident. There was a trend toward a higher VEGF‐R (p = .09) along with decreased VEGF/VEGF‐R ratio representing inadequate VEGF production. In‐hospital mortality was not reported and only two non‐cardiac deaths occurred at long‐term follow‐up. Conclusions Altered TDI and 2DS indices suggest residual biventricular myocardial injury in post‐TCM patients with the apparent LV function recovery. Inappropriate production of VEGF and VEGF‐R were observed, suggesting a possible underlying endothelial dysfunction in these patients.
Collapse
Affiliation(s)
- Liaz Zilberman
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Adi Zalik
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Irina Fugenfirov
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Sara Shimoni
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Jacob George
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Sorel Goland
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 2020; 132:110818. [PMID: 33053509 DOI: 10.1016/j.biopha.2020.110818] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Diabetic retinopathy(DR) is an expanding global health problem, the exact mechanism of which has not yet been clarified clearly, new insights into retinal physiology indicate that diabetes-induced retinal dysfunction may be viewed as an impairment of the retinal neurovascular unit, including retinal ganglion cells, glial cells, endothelial cells, pericytes, and retinal pigment epithelium. Different retinal cells have unique structure and functions, while the interactions among which are less known. Cells are the basic unit of organism structure and function, their impairment could lead to abnormal physiological functions and even organ disorder. Considering the body is multi-dimension and the complexity of DR, one point or a single type of cell can't be used to illustrate the mechanism of occurrence and development of DR. In this review, we provided a systematic and comprehensive elaboration of the cells that are involved in the process of DR. We underlined the importance of considering the neurovascular unit, not just retinal vascular and neural cells, in understanding the pathophysiology of DR. Our studies provided a better understanding of the pathological process in DR and provide a theoretical basis for further research.
Collapse
|
4
|
Budzyń M, Gryszczyńka B, Boruczkowski M, Kaczmarek M, Begier-Krasińska B, Osińska A, Bukowska A, Iskra M, Kasprzak MP. The Potential Role of Circulating Endothelial Cells and Endothelial Progenitor Cells in the Prediction of Left Ventricular Hypertrophy in Hypertensive Patients. Front Physiol 2019; 10:1005. [PMID: 31447695 PMCID: PMC6696897 DOI: 10.3389/fphys.2019.01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 01/20/2023] Open
Abstract
Background The main aim of present study is to evaluate the potential role of circulating endothelial cells (CECs) and endothelial progenitor cells (CEPCs) – representing specific markers of endothelial damage, in the prediction of left ventricular hypertrophy (LVH) in hypertensive patients categorized into two groups; mild (MH) and resistant hypertension (RH). Materials and Methods Thirty patients with MH and 28 subjects with RH were involved in the study. In both groups, patients were divided into an LVH and non-LVH group. The control group included 33 age and sex-matched normotensive volunteers. Physical examination, laboratory tests and echocardiography were conducted. Results In both the MH and RH group, patients with as well as without LVH demonstrated a higher number of CECs and a lower ratio of CEPCs/CECs as compared to the healthy control. Multiple linear regression analysis showed a positive association of CEPCs with left ventricular mass (LVM) and left ventricular mass index (LVMI), independently of other confounders. Conclusion Our results suggest that endothelial injury observed as an elevated CECs number and its impaired regeneration, reflected by a lowered CEPCs/CECs ratio, precede LVH occurrence and may play a significant role in LVH development regardless of the clinical severity of hypertension. Moreover, independent correlation of CEPCs with echocardiographic (ECG) incidences of LVH suggests their potential use as a screening biomarker to stratify the risk of LVH development.
Collapse
Affiliation(s)
- Magdalena Budzyń
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Bogna Gryszczyńka
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Poznań University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznań University of Medical Sciences, Poznań, Poland
| | - Beata Begier-Krasińska
- Department of Hypertensiology, Angiology, and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Angelika Osińska
- Department of Hypertensiology, Angiology, and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Alicja Bukowska
- Medical Analysis Laboratory, Regional Blood Center, Poznań, Poland
| | - Maria Iskra
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Paulina Kasprzak
- Department of General Chemistry, Chair of Chemistry and Clinical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
5
|
Rusu MC, Mănoiu VS, Creţoiu D, Creţoiu SM, Vrapciu AD. Stromal cells/telocytes and endothelial progenitors in the perivascular niches of the trigeminal ganglion. Ann Anat 2018; 218:141-155. [PMID: 29680777 DOI: 10.1016/j.aanat.2017.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Abstract
Stromal cells/telocytes (SCs/TCs) were recently described in the human adult trigeminal ganglion (TG). As some markers are equally expressed in SCs/TCs and endothelial cells, we hypothesized that a subset of the TG SCs/TCs is in fact represented by endothelial progenitor cells of a myelomonocytic origin. This study aimed to evaluate whether the interstitial cells of the human adult TG correlate with the myelomonocytic lineage. We used primary antibodies for c-erbB2/HER-2, CD31, nestin, CD10, CD117/c-kit, von Willebrand factor (vWF), CD34, Stro-1, CD146, α-smooth muscle actin (α-SMA), CD68, VEGFR-2 and cytokeratin 7 (CK7). The TG pial mesothelium and subpial vascular microstroma expressed c-erbB2/HER-2, CK7 and VEGFR-2. SCs/TCs neighbouring the neuronoglial units (NGUs) also expressed HER-2, which suggests a pial origin. These cells were also positive for CD10, CD31, CD34, CD68 and nestin. Endothelial cells expressed CD10, CD31, CD34, CD146, nestin and vWF. We also found vasculogenic networks with spindle-shaped and stellate endothelial progenitors expressing CD10, CD31, CD34, CD68, CD146 and VEGFR-2. Isolated mesenchymal stromal cells expressed Stro-1, CD146, CK7, c-kit and nestin. Pericytes expressed α-SMA and CD146. Using transmission electron microscopy (TEM), we found endothelial-specific Weibel-Palade bodies in spindle-shaped stromal progenitors. Our study supports the hypothesis that an intrinsic vasculogenic niche potentially involved in microvascular maintenance and repair might be present in the human adult trigeminal ganglion and that it might be supplied by either the pial mesothelium or the bone marrow niche.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - D Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S M Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|