1
|
Kaji T, Hachimura S, Ise W, Kaminogawa S. Proteome analysis reveals caspase activation in hyporesponsive CD4 T lymphocytes induced in vivo by the oral administration of antigen. J Biol Chem 2003; 278:27836-43. [PMID: 12736267 DOI: 10.1074/jbc.m212820200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oral administration of antigen can lead to systemic antigen-specific hyporesponsiveness, also known as oral tolerance. This phenomenon is a representative form of immune tolerance to exogenous antigen under physiological conditions. We have previously reported that long term feeding of dietary antigen to ovalbumin-specific T cell receptor (TCR) transgenic mice induced oral tolerance of peripheral T cells with impairment in their TCR-induced calcium-signaling pathway. In this study, we utilized two-dimensional electrophoresis to compare intracellular protein expression patterns of orally tolerant and unsensitized CD4 T cells. We detected 26 increased and 16 decreased protein spots and identified 35 of these by mass spectrometry. The results indicated that the expression of caspases was up-regulated and that the protein levels of intact proteins susceptible to caspase cleavage, such as Grb2-related adaptor downstream of Shc (GADS), were decreased in orally tolerant CD4 T cells. Western blotting experiments confirmed that expression of the active form of caspase-3 and the antiapoptotic factor, X-linked inhibitor of apoptosis, were both up-regulated in orally tolerant CD4 T cells, which were found to be nonapoptotic. We further demonstrated that orally tolerant CD4 T cells could not form normal TCR signaling complexes associated with GADS and showed down-regulated phospholipase C-gamma1 activation, which is likely to contribute to the impairment of TCR-induced calcium signaling. Our findings indicate that orally tolerant CD4 T cells up-regulate caspase activation and show decreased levels of caspase-targeted proteins, including TCR signaling-associated molecules, while up-regulating antiapoptotic factors, all of which appear to contribute to their unique tolerant characteristics.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Administration, Oral
- Animals
- Antigens/pharmacology
- Apoptosis
- Blotting, Western
- CD4-Positive T-Lymphocytes/metabolism
- Calcium/metabolism
- Carrier Proteins/metabolism
- Caspase 3
- Caspases/metabolism
- Cell Division
- Cell Separation
- DNA Fragmentation
- Down-Regulation
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Male
- Mass Spectrometry
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Precipitin Tests
- Proteins/metabolism
- Proteome
- Receptors, Antigen, T-Cell/genetics
- Signal Transduction
- Silver Staining
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spleen/cytology
- Time Factors
- Up-Regulation
- X-Linked Inhibitor of Apoptosis Protein
Collapse
Affiliation(s)
- Tomohiro Kaji
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
2
|
Bronstein-Sitton N, Wang L, Cohen L, Baniyash M. Expression of the T cell antigen receptor zeta chain following activation is controlled at distinct checkpoints. Implications for cell surface receptor down-modulation and re-expression. J Biol Chem 1999; 274:23659-65. [PMID: 10438549 DOI: 10.1074/jbc.274.33.23659] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multisubunit T cell antigen receptor (TCR) is involved in antigen recognition and signal transduction, leading to T cell activation and rapid down-modulation of the cell surface expressed TCRs. Although the levels of TCR cell surface expression are pivotal to the efficiency and duration of the immune response, the molecular mechanisms controlling TCR down-modulation and re-expression upon activation, remain obscure. Here, we provide a biochemical characterization of the regulatory mechanisms governing TCR expression following long-term T cell activation. We focused primarily on the TCR zeta chain, as this is considered the limiting factor in TCR complex formation and transport to the cell surface. We found that following TCR-mediated activation zeta mRNA is up-regulated by a transcription-dependent mechanism. Concomitantly, zeta protein levels are modified according to a biphasic pattern: rapid degradation coinciding with TCR cell surface down-regulation, followed by a rebound to normal levels 24 h subsequent to T cell activation. Even though there are adequate levels of all the TCR subunits within the cell following 24 h of activation, TCR cell surface expression remained very low, provided the activating antibody is continuously present. Correlative with the latter, we detected a previously undescribed monomeric form of the zeta chain. This form could be indicative of adverse endoplasmic reticulum conditions affecting correct protein folding, dimerization, and TCR assembly, all critical for optimal receptor surface re-expression. Cumulatively, our results indicate that the levels of TCR expression following activation, are tightly controlled at several checkpoints.
Collapse
Affiliation(s)
- N Bronstein-Sitton
- Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School. P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
3
|
Mannie MD. Immunological self/nonself discrimination: integration of self vs nonself during cognate T cell interactions with antigen-presenting cells. Immunol Res 1999; 19:65-87. [PMID: 10374696 DOI: 10.1007/bf02786477] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The hypothesis is presented that immunological integration of nonefficacious vs efficacious T cell antigen receptor (TCR) signals are foundational for self/nonself discrimination and that multiple integrative mechanisms are intrinsic to the molecular to molar organization of an adaptive immune response. These integrative mechanisms are proposed to adaptively regulate expression of costimulatory signals, such that foreign proteins are associated with the expression of costimulatory signals, whereas self-proteins are associated with the lack of costimulatory signaling. Overall, this model offers several unique contributions to the study of immunology. First, this model postulates that cognate TCR/major histocompatibility complex (MHC) interactions are sufficient to adaptively mediate immunological self/nonself discrimination. This model thereby offers a unique alternative to models that largely rely on innate immunity to prime immune discrimination. Second, the integrative model argues that the immune system can simultaneously reinforce self-tolerance and promote immunity to foreign organisms at the same time and in the same location. Many alternative models presume that pathogenic self-reactive T cells do not exist at the outset of an immune response against foreign agents. Third, the integrative model uniquely predicts relationships between immunodeficiency and autoimmune pathogenesis. Fourth, this model illustrates the regulatory advantages of cognate antigen presenting cell (APC) systems (i.e., T cell or B cell APC) compared to nonspecific APC. Cognate APC systems together with the respective clonotypic responders may comprise a fundamental "network" of lymphoid cells. Such networks would have clone-specific regulatory capabilities and may be central for immunological self/nonself discrimination. Fifth, this model provides an explanation for "infectious" tolerance without creating specialized subsets of "suppressor" or "regulatory" T cells. Each mature T cell retains the potential to reinforce tolerance or mediate immunity, depending on the specific antigenic cues present in the immediate environment.
Collapse
Affiliation(s)
- M D Mannie
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA.
| |
Collapse
|
4
|
Abstract
Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.
Collapse
Affiliation(s)
- K A Taylor
- International Livestock Research Institute, Nairobi, Kenya.
| | | |
Collapse
|
5
|
Dubois PM, Pihlgren M, Tomkowiak M, Van Mechelen M, Marvel J. Tolerant CD8 T Cells Induced by Multiple Injections of Peptide Antigen Show Impaired TCR Signaling and Altered Proliferative Responses In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The mechanisms responsible for peripheral CD8 T cell tolerance to foreign Ags remain poorly understood. In this study we have characterized the state of CD8 T cell tolerance induced in F5 TCR transgenic mice by multiple peptide injections in vivo. The tolerant state of CD8 T cells is characterized by impaired proliferative responses, increased sensitivity to cell death, and failure to acquire cytotoxic effector function after in vitro antigenic challenge. In vivo monitoring of CD8 T cell proliferation using 5-carboxyfluorescein diacetate succinimidyl ester showed that a large subset of the tolerant T cell population failed to divide in response to peptide. TCR down-regulation could not account for this loss of responsiveness to Ag since recombination-activating gene-1 (RAG-1)−/−F5 CD8 T cell responses were similar to those of RAG-1−/−F5 × RAG-1−/− F1 T lymphocytes, which express lower levels of the transgenic TCR. Analysis of early signal transduction in tolerant CD8 T cells revealed high basal levels of cytoplasmic calcium as well as impaired calcium mobilization and tyrosine phosphorylation after cross-linking of CD3ε and CD8α. Together these data indicate that repeated exposure to soluble antigenic peptide in vivo can induce a state of functional tolerance characterized by defective TCR signaling, impaired proliferation, and increased sensitivity to cell death.
Collapse
Affiliation(s)
- Patrice M. Dubois
- *Immunologie Cellulaire, Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon Centre National de la Recherche Scientifique, Lyon, France; and
| | - Maria Pihlgren
- *Immunologie Cellulaire, Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon Centre National de la Recherche Scientifique, Lyon, France; and
| | - Martine Tomkowiak
- *Immunologie Cellulaire, Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon Centre National de la Recherche Scientifique, Lyon, France; and
| | - Marcelle Van Mechelen
- †Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacqueline Marvel
- *Immunologie Cellulaire, Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon Centre National de la Recherche Scientifique, Lyon, France; and
| |
Collapse
|
6
|
Abstract
Recent studies on the recognition of antigens by CD4+ and CD8+ T cells have revealed new ways of preparing efficient T-cell vaccines. Here, Constantin Bona and colleagues discuss several approaches for the development of T-cell vaccines, with applications ranging from the induction of protective immunity against intracellular parasites to the development of therapeutic agents against autoimmune disorders, allergic diseases and cancer.
Collapse
Affiliation(s)
- C A Bona
- Mount Sinai School of Medicine, Dept of Microbiology, New York, NY 10029, USA.
| | | | | |
Collapse
|
7
|
Boxall AR, Lancaster B, Garthwaite J. Tyrosine kinase is required for long-term depression in the cerebellum. Neuron 1996; 16:805-13. [PMID: 8607998 DOI: 10.1016/s0896-6273(00)80100-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Long-term depression (LTD) at the parallel fiber-Purkinje cell synapse in the cerebellum is a well-known example of synaptic plasticity. Although LTD is thought to reflect an enduring loss of postsynaptic AMPA receptor sensitivity, the underlying mechanisms are unclear. Protein-tyrosine kinases (PTKs) are able to modulate ionotropic receptor function and are enriched in Purkinje cells. Using intracellular recording from Purkinje cells, it is shown that two structurally and mechanistically distinct PTK inhibitors, lavendustin A and herbimycin A, block LTD induced by pairing parallel fiber stimulation with postsynaptic Ca2+ spiking. Intracellular application of the protein kinase C (PKC) activator, (-)-indolactam V, consistently depressed parallel fiber-Purkinje cells EPSPs and occluded pairing-induced LTD. Herbimycin A nullified the run-down produced by (-)-indolactam V. These data suggest that PTKs are necessary for LTD at the parallel fiber-Purkinje cell synapse and that PKC-induced synaptic depression requires PTK activity.
Collapse
Affiliation(s)
- A R Boxall
- University College London, Rayne Institute, United Kingdom
| | | | | |
Collapse
|
8
|
Sartono E, Kruize YC, Partono F, Kurniawan A, Maizels RM, Yazdanbakhsh M. Specific T cell unresponsiveness in human filariasis: diversity in underlying mechanisms. Parasite Immunol 1995; 17:587-94. [PMID: 8817605 DOI: 10.1111/j.1365-3024.1995.tb01002.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In an attempt to overcome T cell unresponsiveness to filarial antigens, 65 individuals belonging to the three clinical groups of elephantiasis patients, microfilaraemics, and asymptomatic amicrofilaraemics who exhibited unresponsiveness to Brugia malayi adult worm antigen (BmA) were studied. Peripheral blood mononuclear cells were cocultured with antigen and one of the following reagents that have been reported to be effective in reconstituting T cell proliferation: interleukin-2 (IL-2), interleukin-7 (IL-7), anti-interleukin-4, anti-interleukin-10, anti-CD2, anti-CD27, anti-CD28, indomethacin, phorbol myristate acetate (PMA), or calcium ionophore (A23187). We were able to overcome antigen-specific unresponsiveness in only a minority of the individuals studied. Co-culture with IL-2, IL-7, indomethacin and PMA were the only conditions which resulted in enhanced proliferation to BmA in these individuals. In general, unresponsiveness in elephantiasis patients was easier to reverse than in other clinical groups: in 50% of elephantiasis patients, in 12.5% of microfilaraemics and in 20% of asymptomatic amicrofilaraemics. The results indicate that more than one distinct immunological mechanism may account for the antigen-specific unresponsiveness in individuals exposed to and infected with brugian filariasis.
Collapse
Affiliation(s)
- E Sartono
- Department of Parasitology, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Abastado JP, Lone YC, Casrouge A, Boulot G, Kourilsky P. Dimerization of soluble major histocompatibility complex-peptide complexes is sufficient for activation of T cell hybridoma and induction of unresponsiveness. J Exp Med 1995; 182:439-47. [PMID: 7629504 PMCID: PMC2192121 DOI: 10.1084/jem.182.2.439] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules are cell-surface proteins that present peptides to CD8+ T cells. These peptides are mostly derived from endogenously synthesized protein. Recombinant, soluble MHC class I molecules were produced, purified, and loaded homogeneously with synthetic peptide. These MHC-peptide complexes were used to activate a T cell hybridoma. While monomers of MHC-peptide bound to the T cell, they showed no stimulatory activity. Dimers fully triggered the T cell hybridoma to secrete interleukin 2. This response was followed by a state in which the T cell was refractory to restimulation as a result of defective signal transduction through the T cell receptor.
Collapse
Affiliation(s)
- J P Abastado
- Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Medicale U277, Paris, France
| | | | | | | | | |
Collapse
|
10
|
|
11
|
|