1
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
2
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
3
|
Kalinina AA, Ziganshin RK, Silaeva YY, Sharova NI, Nikonova MF, Persiyantseva NA, Gorkova TG, Antoshina EE, Trukhanova LS, Donetskova AD, Komogorova VV, Litvina MM, Mitin AN, Zamkova MA, Bruter AV, Khromykh LM, Kazansky DB. Physiological and Functional Effects of Dominant Active TCRα Expression in Transgenic Mice. Int J Mol Sci 2023; 24:ijms24076527. [PMID: 37047500 PMCID: PMC10094918 DOI: 10.3390/ijms24076527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A T cell receptor (TCR) consists of α- and β-chains. Accumulating evidence suggests that some TCRs possess chain centricity, i.e., either of the hemi-chains can dominate in antigen recognition and dictate the TCR’s specificity. The introduction of TCRα/β into naive lymphocytes generates antigen-specific T cells that are ready to perform their functions. Transgenesis of the dominant active TCRα creates transgenic animals with improved anti-tumor immune control, and adoptive immunotherapy with TCRα-transduced T cells provides resistance to infections. However, the potential detrimental effects of the dominant hemi-chain TCR’s expression in transgenic animals have not been well investigated. Here, we analyzed, in detail, the functional status of the immune system of recently generated 1D1a transgenic mice expressing the dominant active TCRα specific to the H2-Kb molecule. In their age dynamics, neither autoimmunity due to the random pairing of transgenic TCRα with endogenous TCRβ variants nor significant disturbances in systemic homeostasis were detected in these mice. Although the specific immune response was considerably enhanced in 1D1a mice, responses to third-party alloantigens were not compromised, indicating that the expression of dominant active TCRα did not limit immune reactivity in transgenic mice. Our data suggest that TCRα transgene expression could delay thymic involution and maintain TCRβ repertoire diversity in old transgenic mice. The detected changes in the systemic homeostasis in 1D1a transgenic mice, which are minor and primarily transient, may indicate variations in the ontogeny of wild-type and transgenic mouse lines.
Collapse
Affiliation(s)
- Anastasiia A. Kalinina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Rustam Kh. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russia
| | - Yulia Yu. Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Nina I. Sharova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Margarita F. Nikonova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Nadezda A. Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Tatiana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Almira D. Donetskova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Victoria V. Komogorova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Marina M. Litvina
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Alexander N. Mitin
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Maria A. Zamkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Alexandra V. Bruter
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ludmila M. Khromykh
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Ross SH, Rollings CM, Cantrell DA. Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. Front Immunol 2021; 12:712402. [PMID: 34603285 PMCID: PMC8484760 DOI: 10.3389/fimmu.2021.712402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic and nutrient-sensing pathways play an important role in controlling the efficacy of effector T cells. Oxygen is a critical regulator of cellular metabolism. However, during immune responses T cells must function in oxygen-deficient, or hypoxic, environments. Here, we used high resolution mass spectrometry to investigate how the proteome of primary murine CD8+ cytotoxic T lymphocytes (CTLs) is reconfigured in response to hypoxia in vitro. We identified and quantified over 7,600 proteins and discovered that hypoxia increased the abundance of a selected number of proteins in CTLs. This included glucose transporters, metabolic enzymes, transcription factors, cytolytic effector molecules, checkpoint receptors and adhesion molecules. While some of these proteins may augment the effector functions of CTLs, others may limit their cytotoxicity. Moreover, we determined that hypoxia could inhibit IL-2-induced proliferation cues and antigen-induced pro-inflammatory cytokine production in CTLs. These data provide a comprehensive resource for understanding the magnitude of the CTL response to hypoxia and emphasise the importance of oxygen-sensing pathways for controlling CD8+ T cells. Additionally, this study provides new understanding about how hypoxia may promote the effector function of CTLs, while contributing to their dysfunction in some contexts.
Collapse
Affiliation(s)
- Sarah H Ross
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Stolp B, Thelen F, Ficht X, Altenburger LM, Ruef N, Inavalli VVGK, Germann P, Page N, Moalli F, Raimondi A, Keyser KA, Seyed Jafari SM, Barone F, Dettmer MS, Merkler D, Iannacone M, Sharpe J, Schlapbach C, Fackler OT, Nägerl UV, Stein JV. Salivary gland macrophages and tissue-resident CD8 + T cells cooperate for homeostatic organ surveillance. Sci Immunol 2020; 5:5/46/eaaz4371. [PMID: 32245888 DOI: 10.1126/sciimmunol.aaz4371] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
Abstract
It is well established that tissue macrophages and tissue-resident memory CD8+ T cells (TRM) play important roles for pathogen sensing and rapid protection of barrier tissues. In contrast, the mechanisms by which these two cell types cooperate for homeostatic organ surveillance after clearance of infections is poorly understood. Here, we used intravital imaging to show that TRM dynamically followed tissue macrophage topology in noninflamed murine submandibular salivary glands (SMGs). Depletion of tissue macrophages interfered with SMG TRM motility and caused a reduction of interepithelial T cell crossing. In the absence of macrophages, SMG TRM failed to cluster in response to local inflammatory chemokines. A detailed analysis of the SMG microarchitecture uncovered discontinuous attachment of tissue macrophages to neighboring epithelial cells, with occasional macrophage protrusions bridging adjacent acini and ducts. When dissecting the molecular mechanisms that drive homeostatic SMG TRM motility, we found that these cells exhibit a wide range of migration modes: In addition to chemokine- and adhesion receptor-driven motility, resting SMG TRM displayed a remarkable capacity for autonomous motility in the absence of chemoattractants and adhesive ligands. Autonomous SMG TRM motility was mediated by friction and insertion of protrusions into gaps offered by the surrounding microenvironment. In sum, SMG TRM display a unique continuum of migration modes, which are supported in vivo by tissue macrophages to allow homeostatic patrolling of the complex SMG architecture.
Collapse
Affiliation(s)
- Bettina Stolp
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland.,Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - V V G Krishna Inavalli
- University of Bordeaux, 33700 Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077 Bordeaux, France
| | - Philipp Germann
- EMBL Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | | | | | - Kirsten A Keyser
- Institute for Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | | | - James Sharpe
- EMBL Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver T Fackler
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - U Valentin Nägerl
- University of Bordeaux, 33700 Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077 Bordeaux, France
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
6
|
Sivapatham S, Ficht X, Barreto de Albuquerque J, Page N, Merkler D, Stein JV. Initial Viral Inoculum Determines Kinapse-and Synapse-Like T Cell Motility in Reactive Lymph Nodes. Front Immunol 2019; 10:2086. [PMID: 31552034 PMCID: PMC6743022 DOI: 10.3389/fimmu.2019.02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
T cell activation in lymphoid tissue occurs through interactions with cognate peptide-major histocompatibility complex (pMHC)-presenting dendritic cells (DCs). Intravital imaging studies using ex vivo peptide-pulsed DCs have uncovered that cognate pMHC levels imprint a wide range of dynamic contacts between these two cell types. T cell-DC interactions vary between transient, "kinapse-like" contacts at low to moderate pMHC levels to immediate "synapse-like" arrest at DCs displaying high pMHC levels. To date, it remains unclear whether this pattern is recapitulated when the immune system faces a replicative agent, such as a virus, at low and high inoculum. Here, we locally administered low and high inoculum of lymphocytic choriomeningitis virus (LCMV) in mice to follow activation parameters of Ag-specific CD4+ and CD8+ T cells in draining lymph nodes (LNs) during the first 72 h post infection. We correlated these data with kinapse- and synapse-like motility patterns of Ag-specific T cells obtained by intravital imaging of draining LNs. Our data show that initial viral inoculum controls immediate synapse-like T cell arrest vs. continuous kinapse-like motility. This remains the case when the viral inoculum and thus the inflammatory microenvironment in draining LNs remains identical but cognate pMHC levels vary. Our data imply that the Ag-processing capacity of draining LNs is equipped to rapidly present high levels of cognate pMHC when antigenic material is abundant. Our findings further suggest that widespread T cell arrest during the first 72 h of an antimicrobial immune responses is not required to trigger proliferation. In sum, T cells adapt their scanning behavior according to available antigen levels during viral infections, with dynamic changes in motility occurring before detectable expression of early activation markers.
Collapse
Affiliation(s)
- Sujana Sivapatham
- Department of Oncology, Microbiology, and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Nicolas Page
- Division of Clinical Pathology, Department of Pathology and Immunology, University Hospital of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, University Hospital of Geneva, Geneva, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology, and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Chan J, Kim PY, Kranz E, Nagaoka Y, Lee Y, Wen J, Elsaesser HJ, Qin M, Brooks DG, Ringpis GE, Chen IS, Kamata M. Purging Exhausted Virus-Specific CD8 T Cell Phenotypes by Somatic Cell Reprogramming. AIDS Res Hum Retroviruses 2017; 33:S59-S69. [PMID: 29140111 DOI: 10.1089/aid.2017.0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T cells are critical in controlling virus infections. However, continuous antigen stimulation and negative regulatory factors cause CD8 T cells to enter a dysfunctional state (T cell exhaustion), resulting in viral persistence. We hypothesized that the exhausted T cell state could be molecularly rejuvenated using a somatic cell reprogramming technology, which is technically able to convert any types of cells to induced pluripotent stem cells (iPSCs), to regenerate functional T cells capable of purging chronic infection. We generated a new mouse line (B6/129OKSM) in which every somatic cell contains four doxycycline-inducible reprogramming genes (Oct4, Klf4, Sox2, and c-Myc: OKSM), and infected them with lymphocytic choriomeningitis virus (LCMV) clone 13 to establish chronic infection. Exhausted LCMV-specific T cells isolated by flow sorting were successfully reprogrammed ex vivo into iPSCs in the presence of doxycycline. Upon injection into blastocysts and subsequent transfer into foster females, the reprogrammed cells differentiated into functional naive T cells that maintained their original antigen specificity. These results provide proof of concept that somatic cell reprogramming of exhausted T cells into iPSCs can erase imprints of their previous exhausted state and in turn regenerate functional virus-specific T cells.
Collapse
Affiliation(s)
- Joshua Chan
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Patrick Y. Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yoshiko Nagaoka
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - YooJin Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Heidi J. Elsaesser
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Meng Qin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David G. Brooks
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Gene-Errol Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Irvin S.Y. Chen
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| | - Masakazu Kamata
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
8
|
Preservation of dendritic cell function during vesicular stomatitis virus infection reflects both intrinsic and acquired mechanisms of resistance to suppression of host gene expression by viral M protein. J Virol 2013; 87:11730-40. [PMID: 23986580 DOI: 10.1128/jvi.00680-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.
Collapse
|
9
|
Abstract
Cytotoxic T cells (CTL) play a critical role in the clearance of respiratory viral infections, but they also contribute to disease manifestations. In this study, we infected mice with a genetically modified pneumonia virus of mice (PVM) that allowed visualization of virus-specific CTL and infected cells in situ. The first virus-specific T cells entered the lung via blood vessels in the scattered foci of PVM-infected cells, which densely clustered around the bronchi at day 7 after infection. At this time, overall pulmonary virus load was maximal, but the mice showed no overt signs of disease. On days 8 to 9, T cells gained access to the infected bronchial epithelium and to the lung interstitium, which was associated with a reduction in the number of virus-infected cells within the initial clusters but could not prevent further virus spread throughout the lung tissue. Interestingly, recruitment of virus-specific CTL throughout the parenchyma was still ongoing on day 10, when the virus infection was already largely controlled. This also represented the peak of clinical disease. Thus, disease was associated with an exuberant T cell infiltration late in the course of the infection, which may be required to completely eliminate virus at residual foci of infection. PVM-induced immunopathology may thus result from the need to generate widespread T cell infiltrates to complete the elimination of virus-infected cells in a large organ like the lung. This experimental model provides the first insights into the spatiotemporal evolution of pulmonary antiviral T cell immunity in vivo.
Collapse
|
10
|
Furmanski AL, Bartok I, Chai JG, Singh Y, Ferreira C, Scott D, Holland SJ, Bourdeaux C, Crompton T, Dyson J. Peptide-specific, TCR-alpha-driven, coreceptor-independent negative selection in TCR alpha-chain transgenic mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:650-7. [PMID: 19995903 DOI: 10.4049/jimmunol.0902291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As thymocytes differentiate, Ag sensitivity declines, with immature CD4-CD8- double-negative (DN) cells being most susceptible to TCR signaling events. We show that expression of alphabetaTCR from the DN3 stage lowers the threshold for activation, allowing recognition of MHC peptides independently of the TCR beta-chain and without either T cell coreceptor. The MHC class I-restricted C6 TCR recognizes the Y-chromosome-derived Ag HYK(k)Smcy. Positive selection in C6 alphabetaTCR females is skewed to the CD8 compartment, whereas transgenic male mice exhibit early clonal deletion of thymocytes. We investigated the effect of the HYK(k)Smcy complex on developing thymocytes expressing the C6 TCR alpha-chain on a TCR-alpha(-/-) background. On the original selecting haplotype, the skew to the CD8 lineage is preserved. This is MHC dependent, as the normal bias to the CD4 subset is seen on an H2b background. In male H2k C6 alpha-only mice, the presence of the HYK(k)Smcy complex leads to a substantial deletion of thymocytes from the DN subset. This phenotype is replicated in H2k C6 alpha-only female mice expressing an Smcy transgene. Deletion is not dependent on the beta variable segment of the C6 TCR or on a restricted TCR-beta repertoire. In contrast, binding of HYK(k)Smcy and Ag-specific activation of mature CD8+ T cells is strictly dependent on the original C6 beta-chain. These data demonstrate that, in comparison with mature T cells, alphabetaTCR+ immature thymocytes can recognize and transduce signals in response to specific MHC-peptide complexes with relaxed binding requirements.
Collapse
Affiliation(s)
- Anna L Furmanski
- Department of Immunology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Konjufca V, Miller MJ. Two-photon microscopy of host-pathogen interactions: acquiring a dynamic picture of infection in vivo. Cell Microbiol 2009; 11:551-9. [PMID: 19170686 DOI: 10.1111/j.1462-5822.2009.01289.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-photon (2P) microscopy has become increasingly popular among immunologists for analysing single-cell dynamics in tissues. Researchers are now taking 2P microscopy beyond the study of model antigen systems (e.g. ovalbumin immunization) and are applying the technique to examine infection in vivo. With the appropriate fluorescent probes, 2P imaging can provide high-resolution spatio-temporal information regarding cell behaviour, monitor cell functions and assess various outcomes of infection, such as host cell apoptosis or pathogen proliferation. Imaging of transgenic and knockout mice can be used to probe molecular mechanisms governing the host response to infection. From the microbe side, imaging genetically engineered mutant strains of a pathogen can test the roles of specific virulence factors in pathogenesis. Here, we discuss recent work that has applied 2P microscopy to study models of infection and highlight the tremendous potential that this approach has for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Vjollca Konjufca
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
12
|
Angelov GS, Guillaume P, Luescher IF. CD8β knockout mice mount normal anti-viral CD8+ T cell responses—but why? Int Immunol 2008; 21:123-35. [DOI: 10.1093/intimm/dxn130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Cohn M. The Tritope Model for restrictive recognition of antigen by T-cells II. Implications for ontogeny, evolution and physiology. Mol Immunol 2008; 45:632-52. [PMID: 17889366 PMCID: PMC2104471 DOI: 10.1016/j.molimm.2006.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 02/01/2006] [Indexed: 12/19/2022]
Abstract
Based on the Tritope Model of the TCR [Cohn, M., 2005c. The Tritope Model for restrictive recognition of antigen by T-cells. I. What assumptions about structure are needed to explain function? Mol. Immunol. 42, 1419-1443], a set of functional and evolutionary problems surrounding restrictive recognition of antigen are discussed. These include the origin of allele-specific recognition, the selection pressures for polygeneism and polymorphism, the TCR signaling interactions, the centrality of effector T-helper (eTh)-dependence for activation, the role of haplotype exclusion, "nonclassical" MHC-elements, alloreactivity versus xenoreactivity, etc. Further, a set of observations believed to support the Standard Model are reinterpreted.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
14
|
Latner DR, Kaech SM, Ahmed R. Enhanced expression of cell cycle regulatory genes in virus-specific memory CD8+ T cells. J Virol 2004; 78:10953-9. [PMID: 15452215 PMCID: PMC521836 DOI: 10.1128/jvi.78.20.10953-10959.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.
Collapse
Affiliation(s)
- Donald R Latner
- Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, G211, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
15
|
Sugiyama S, Kohyama M, Oda M, Azuma T, Wither JE, Hozumi N. Molecular basis of antigen recognition by insulin specific T cell receptor. Immunol Lett 2004; 91:133-9. [PMID: 15019281 DOI: 10.1016/j.imlet.2003.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 10/21/2003] [Accepted: 11/05/2003] [Indexed: 11/17/2022]
Abstract
The TCR alpha/beta chains recognize antigen peptides bound to the groove of the MHC class II molecule. The crystal structure analyses of the TCR/peptide/MHC class II complexes have revealed that the Valpha chains play a significant role in antigen recognition. However, molecular details which amino acid residues of the Valpha chain are able to contribute to fine antigen specificity are not clearly understood. Previously, we have classified a panel of T hybrids specific for insulin isotypes from different species of animals into four groups based on response profiles to these antigens. In particular, the group III (pork insulin > or = beef insulin hierarchy of responsiveness) and IV (pork insulin >> beef insulin hierarchy of responsiveness) T hybrids are interesting, since these TCR alpha/beta chains with marked different antigen specificities demonstrate identical gene usages and very similar sequences. To specifically address the molecular requirements for insulin recognition by TCR, the TCR alpha and beta chain genes from these group III and IV T hybrids were transfected into 58 alpha-beta- T hybrid. The experiments suggested that CDR3alpha dictates the fine antigen specificity. Then, we have introduced a series of mutations into position 95 of CDR3alpha. The mutation experiments clearly indicated that position 95alpha determines the antigen specificity of the group III and IV T hybrids.
Collapse
Affiliation(s)
- Shigeru Sugiyama
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Prinz I, Klemm U, Kaufmann SHE, Steinhoff U. Exacerbated colitis associated with elevated levels of activated CD4+ T cells in TCRalpha chain transgenic mice. Gastroenterology 2004; 126:170-81. [PMID: 14699498 DOI: 10.1053/j.gastro.2003.10.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS An unconventional CD4+ TCRalpha(-)beta(+) cell population mediates the development of colitis resembling ulcerative colitis in T-cell receptor alpha mutant (TCRalpha(-/-)) mice. However, the significance of such T cells in individuals with an intact TCRalpha locus remains unclear. Because a substantial proportion of naturally rearranged TCRalpha chains fails to pair with TCRbeta chains, the aim of this study was to analyze the development of CD4+ TCRalpha(-)beta(+) cells and the course of colitis in the presence of such a TCRalpha chain. METHODS TCR chain transgenic TCRalpha(-/-) mice were generated and compared with wild-type and TCRalpha(-/-) mice by flow cytometric analysis of T lymphocytes with respect to their TCR expression and activation status and by histological analysis of colon tissue. The colitogenic potential of the unconventional CD4+ TCRalpha(-)beta(+) cells was assessed by adoptive transfer experiments. Furthermore, the half-life of TCRbeta chains was determined by pulse-chase labeling and immunoprecipitation. RESULTS Transgenic expression of a TCR Valpha7.2 chain led to increased frequencies of CD4+ TCRalpha(-)beta(+) cells that caused rapid onset of colitis, reminiscent of, but even more severe than, that in TCRalpha(-/-) mice. This unconventional T-cell population displayed a constitutively activated phenotype in normal and transgenic TCRalpha(-/-) mice. An extended half-life of newly synthesized TCRbeta chains suggests a chaperone function of the TCR Valpha7.2 chain in TCRalpha(-/-) mice. CONCLUSIONS Physiological TCRalpha rearrangement can promote the formation of chronically activated CD4+ TCRalpha(-)beta(+) T cells and may play a role in the etiology of UC.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Cell Survival
- Colitis/pathology
- Colitis/physiopathology
- Colon/pathology
- Colon/physiopathology
- Gene Rearrangement
- Half-Life
- Lymphocytes
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Severity of Illness Index
- Thymus Gland/pathology
- Thymus Gland/physiopathology
Collapse
Affiliation(s)
- Immo Prinz
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Mantovani S, Palermo B, Garbelli S, Campanelli R, Robustelli Della Cuna G, Gennari R, Benvenuto F, Lantelme E, Giachino C. Dominant TCR-alpha requirements for a self antigen recognition in humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6253-60. [PMID: 12444131 DOI: 10.4049/jimmunol.169.11.6253] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR-alpha and -beta chains are composed of somatically rearranged V, D, and J germline-encoded gene segments that confer Ag specificity. Recent crystallographic analyses revealed that TCR-alpha has more contacts with peptide than TCR-beta, suggesting the possibility that peptide recognition predominantly relies on TCR-alpha. T cells specific for the self Ag Melan-A/MART-1 possess an exceptionally high precursor frequency in human histocompatibility leukocyte Ag-A2 individuals. This provided a unique situation for assessment of the structural relationship between TCR and peptide/MHC ligand at both the pre- and postimmune levels. Molecular and phenotypic analysis of many different Melan-A-specific T cell populations revealed that a structural constraint is imposed on the TCR for engagement with Melan-A peptides presented by HLA-A2, namely the highly preferential use of a particular TCRAV segment, AV2. Examination of CD8 single-positive thymocytes indicated that this preferential use in forming the Melan-A-specific TCR is mainly imposed by intrathymic positive selection. Our data demonstrate a dominant function of TCRAV2 segment in forming the TCR repertoire specific for the human self Ag Melan-A/MART-1 and support the view that Ag recognition is mediated predominantly by TCR-alpha.
Collapse
Affiliation(s)
- Stefania Mantovani
- Laboratory of Experimental Immunology, Instituto di Ricovero e Cura a Carattere Scientifico Salvatore Maugeri Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yokosuka T, Takase K, Suzuki M, Nakagawa Y, Taki S, Takahashi H, Fujisawa T, Arase H, Saito T. Predominant role of T cell receptor (TCR)-alpha chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system. J Exp Med 2002; 195:991-1001. [PMID: 11956290 PMCID: PMC2193687 DOI: 10.1084/jem.20010809] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The CDR3 regions of T cell receptor (TCR)-alpha and -beta chains play central roles in the recognition of antigen (Ag)-MHC complex. TCR repertoire is created on the basis of Ag recognition specificity by CDR3s. To analyze the potential spectrum of TCR-alpha and -beta to exhibit Ag specificity and generate TCR repertoire, we established hundreds of TCR transfectants bearing a single TCR-alpha or -beta chain derived from a cytotoxic T cell (CTL) clone, RT-1, specific for HIVgp160 peptide, and randomly picked up TCR-beta or -alpha chains. Surprisingly, one-third of such TCR-beta containing random CDR3 beta from naive T cells of normal mice could reconstitute the antigen-reactive TCR coupling with RT-1 TCR-alpha. A similar dominant function of TCR-alpha in forming Ag-specific TCR, though low-frequency, was obtained for lymphocytic choriomeningitis virus-specific TCR. Subsequently, we generated TCR-alpha and/or -beta transgenic (Tg) mice specific for HIVgp160 peptide, and analyzed the TCR repertoire of Ag-specific CTLs. Similar to the results from TCR reconstitution, TCR-alpha Tg generated CTLs with heterogeneous TCR-beta, whereas TCR-beta Tg-induced CTLs bearing a single TCR-alpha. These findings of Ag recognition with minimum involvement of CDR3 beta expand our understanding regarding the flexibility of the spectrum of TCR and suggest a predominant role of TCR-alpha chain in determining the preimmune repertoire of Ag-specific TCR.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Base Sequence
- DNA, Complementary
- HIV Envelope Protein gp160/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pasare C, Mukherjee P, Verhoef A, Bansal P, Mendiratta SK, George A, Lamb JR, Rath S, Bal V. T cells in mice expressing a transgenic human TCR beta chain get positively selected but cannot be activated in the periphery by signaling through TCR. Int Immunol 2001; 13:53-62. [PMID: 11133834 DOI: 10.1093/intimm/13.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TCR-CD3 complex-mediated signaling is crucial for both developmental selection and antigenic activation of T cells. We report that mice expressing a recombined human TCRbeta chain (Tg), which have normal development of T cells, mounted very weak responses to immunization with protein antigens as well as the HA307-319 peptide recognized by the human T cell clone HA1.7 from which the transgene is derived. An anti-CD3epsilon mAb triggered equivalent proliferation from Tg and non-Tg T cells, but an anti-human TCRbeta mAb induced proliferation poorly in Tg T cells in contrast to human T cells or HA1.7. In Tg mice, T cells expressing endogenous TCR were CD44(high), whereas most transgene-expressing T cells remained CD44(low), suggesting that transgene-expressing cells are not activated in the periphery to participate in immune responses. However, anti-human TCRbeta could induce some activation markers on T cells and cross-linking of the Tg TCR by plate-coated anti-human TCRbeta efficiently induced T cell proliferation. Human TCRbeta-mediated Tg T cell activation could be rescued by exogenous IL-2, as well as by the calcium ionophore A23187, but not by phorbol esters. Thus, this human TCRbeta chain functions efficiently for positive selection of mouse T cells, but not for their peripheral activation, probably because of a lack of oligomerization leading to defects in signaling for calcium flux and IL-2 induction. The data thus suggest an early point of separation of signaling pathways between positive selection and peripheral activation of T cells.
Collapse
MESH Headings
- Animals
- Antigens/administration & dosage
- Antigens/immunology
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Biomarkers
- Calcimycin/pharmacology
- Cells, Cultured
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, T-Cell Receptor beta/genetics
- Humans
- Injections, Intradermal
- Interleukin-2/pharmacology
- Ionophores/pharmacology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred CBA
- Mice, Transgenic
- Muromonab-CD3/pharmacology
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- C Pasare
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brabb T, Rubicz R, Mannikko V, Goverman J. Separately expressed T cell receptor alpha and beta chain transgenes exert opposite effects on T cell differentiation and neoplastic transformation. Eur J Immunol 1997; 27:3039-48. [PMID: 9394835 DOI: 10.1002/eji.1830271142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two aspects of T cell differentiation in T cell receptor (TCR)-transgenic mice, the generation of an unusual population of CD4-CD8-TCR+ thymocytes and the absence of gamma delta cells, have been the focus of extensive investigation. To examine the basis for these phenomena, we investigated the effects of separate expression of a transgenic TCR alpha chain and a transgenic TCR beta chain on thymocyte differentiation. Our data indicate that expression of a transgenic TCR alpha chain causes thymocytes to differentiate into a CD4-CD8-TCR+ lineage at an early developmental stage, depleting the number of thymocytes that differentiate into the alpha beta lineage. Surprisingly, expression of the TCR alpha chain transgene is also associated with the development of T cell lymphosarcoma. In contrast, expression of the transgenic TCR beta chain causes immature T cells to accelerate differentiation into the alpha beta lineage and thus inhibits the generation of gamma delta cells. Our observations provide a model for understanding T cell differentiation in TCR-transgenic mice.
Collapse
MESH Headings
- Animals
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Embryonic and Fetal Development/genetics
- Embryonic and Fetal Development/immunology
- Gene Expression Regulation/immunology
- Genes, T-Cell Receptor alpha/immunology
- Genes, T-Cell Receptor beta/immunology
- Lymphocyte Count
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Transgenes/immunology
Collapse
Affiliation(s)
- T Brabb
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|