1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Albakova Z. HSP90 multi-functionality in cancer. Front Immunol 2024; 15:1436973. [PMID: 39148727 PMCID: PMC11324539 DOI: 10.3389/fimmu.2024.1436973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The 90-kDa heat shock proteins (HSP90s) are molecular chaperones essential for folding, unfolding, degradation and activity of a wide range of client proteins. HSP90s and their cognate co-chaperones are subject to various post-translational modifications, functional consequences of which are not fully understood in cancer. Intracellular and extracellular HSP90 family members (HSP90α, HSP90β, GRP94 and TRAP1) promote cancer by sustaining various hallmarks of cancer, including cell death resistance, replicative immortality, tumor immunity, angiogenesis, invasion and metastasis. Given the importance of HSP90 in tumor progression, various inhibitors and HSP90-based vaccines were developed for the treatment of cancer. Further understanding of HSP90 functions in cancer may provide new opportunities and novel therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Chokan Limited Liability Partnership, Almaty, Kazakhstan
| |
Collapse
|
3
|
Maehana T, Tanaka T, Hashimoto K, Kobayashi K, Kitamura H, Masumori N. Heat shock protein 90 is a new potential target of anti-rejection therapy in allotransplantation. Cell Stress Chaperones 2022; 27:337-351. [PMID: 35397061 PMCID: PMC9346020 DOI: 10.1007/s12192-022-01272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
The critical roles of heat shock protein 90 (HSP90) in immune reactions associated with viral infection and autoimmune disease are well known. To date, however, its roles in the alloimmune response and the immunosuppressive effect of HSP90 inhibitors in allotransplantation have remained unknown. The purpose of this study was to examine the therapeutic efficacy of the HSP90 inhibitor 17-DMAG in allotransplantation models. C57BL/6 (H-2b) and BALB/c (H-2d) mice were used as donors for and recipients of skin and heart transplantation, respectively. Treatment with 17-DMAG (daily i.p.) or a vehicle was initiated 3 days before transplantation. Immunological outcomes were assessed by histopathological examinations, flow cytometric analysis, quantitative RT-PCR, ELISA, ELISPOT assay, and MLR. 17-DMAG treatment significantly prolonged the survival of both skin and heart allografts. In 17-DMAG-treated mice, donor-reactive splenocytes producing IFN-γ were significantly reduced along with the intragraft mRNA expression level and serum concentration of IFN-γ. Intragraft mRNA expression of cytokines and chemokines associated with both innate and adaptive immunity was suppressed in 17-DMAG-treated group. MLR showed suppression of the donor-specific proliferation of CD4 + T and CD19 + B cells in the spleens of 17-DMAG-treated mice. 17-DMAG treatment also reduced the number of activated NK cells. Furthermore, the treatment lowered the titers of donor-specific antibodies in the serum and prolonged a second skin allograft in mice sensitized by previous skin transplantation. HSP90 inhibition by 17-DMAG can affect various immune responses, including innate immunity, adaptive immunity, and humoral immunity, suggesting its therapeutic potential against acute rejection in allotransplantation.
Collapse
Affiliation(s)
- Takeshi Maehana
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Kohei Hashimoto
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Ko Kobayashi
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-1094, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
4
|
Deycmar S, Mara E, Kerschbaum-Gruber S, Waller V, Georg D, Pruschy M. Ganetespib selectively sensitizes cancer cells for proximal and distal spread-out Bragg peak proton irradiation. Radiat Oncol 2022; 17:72. [PMID: 35410422 PMCID: PMC8996402 DOI: 10.1186/s13014-022-02036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/20/2022] [Indexed: 02/03/2023] Open
Abstract
Objective Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics. Thus, the radiosensitizing effect of HSP90-inhibiting ganetespib was investigated for reference photon irradiation and proton irradiation at a proximal and distal position in a spread-out Bragg peak (SOBP). Methods A549 and FaDu cells were treated with low-dose (2 nM resp. 1 nM) ganetespib and irradiated with 200 kV photons. Proton irradiation was performed at a proximal and a distal position within a SOBP, with corresponding dose-averaged linear-energy transfer (LETD) values of 2.1 and 4.5 keV/µm, respectively. Cellular survival data was fitted to the linear-quadratic model to calculate relative biological effectiveness (RBE) and the dose-modifying factor (DMF). Additionally, A549 cells were treated with increasing doses of ganetespib and investigated by flow cytometry, immunoblotting, and immunofluorescence microscopy to investigate cell cycle distribution, Rad51 protein levels, and γH2AX foci, respectively. Results Low-dosed ganetespib significantly sensitized both cancer cell lines exclusively for proton irradiation at both investigated LETD, resulting in increased RBE values of 10–40%. In comparison to photon irradiation, the fraction of cells in S/G2/M phase was elevated in response to proton irradiation with 10 nM ganetespib consistently reducing this population. No changes in cell cycle distribution were detected in unirradiated cells by ganetespib alone. Protein levels of Rad51 are downregulated in irradiated A549 cells by 10 nM and also 2 nM ganetespib within 24 h. Immunofluorescence staining demonstrated similar induction and removal of γH2AX foci, irrespective of irradiation type or ganetespib administration. Conclusion Our findings illustrate a proton-specific sensitizing effect of low-dosed ganetespib in both employed cell lines and at both investigated SOBP positions. We provide additional experimental data on cellular response and a rational for future combinatorial approaches with proton radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02036-z.
Collapse
|
5
|
Albakova Z, Mangasarova Y. The HSP Immune Network in Cancer. Front Immunol 2021; 12:796493. [PMID: 34917098 PMCID: PMC8669653 DOI: 10.3389/fimmu.2021.796493] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins are molecular chaperones which support tumor development by regulating various cellular processes including unfolded protein response, mitochondrial bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis, cancer cell stemness, epithelial-mesenchymal transition and tumor immunity. Apart from their intracellular activities, HSPs have also distinct extracellular functions. However, the role that HSP chaperones play in the regulation of immune responses inside and outside the cell is not yet clear. Herein, we explore the intracellular and extracellular immunologic functions of HSPs in cancer. A broader understanding of how HSPs modulate immune responses may provide critical insights for the development of effective immunotherapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
6
|
Tunable heat shock protein-mediated NK cell responses are orchestrated by STAT1 in Antigen Presenting Cells. Sci Rep 2021; 11:16106. [PMID: 34373574 PMCID: PMC8352880 DOI: 10.1038/s41598-021-95578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The release of Heat Shock Proteins (HSPs) from aberrant cells can initiate immune responses following engagement of the HSPs with antigen presenting cells (APCs). This is an important mechanism for cancer immunosurveillance and can also be modeled by vaccination with HSPs through various routes, targeting specific APCs expressing the HSP receptor CD91. Immunological outcomes can be varied as a result of the broad expression of CD91 in different dendritic cell and macrophage populations. We investigated the cellular response of different APCs to the prototypical immunogenic HSP, gp96, in the context of Th1 immunity. Although APCs generally express similar levels of the HSP receptor CD91, we uncovered APC-distinct, downstream signaling pathways activating STAT1, and differential STAT1 induced genes. As a result of this differential and unique signaling we determined that gp96-activated macrophages, but not DCs are capable of activating NK cells to produce IFN-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ. These data demonstrate that different APC subsets elicit unique intracellular signaling responses to HSPs which result in different patterns of downstream cellular activation and immune responses. Collectively this provides a novel tunable and autochthonous immune response to extracellular HSPs which has important implications on the development of immunity to cancer and infectious disease, as well as homeostasis.
Collapse
|
7
|
Hiu JJ, Yap MKK. The effects of Naja sumatrana venom cytotoxin, sumaCTX on alteration of the secretome in MCF-7 breast cancer cells following membrane permeabilization. Int J Biol Macromol 2021; 184:776-786. [PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
8
|
Wang Q, Su X, He Y, Wang M, Yang D, Zhang R, Wei J, Ma Q, Zhai W, Pang A, Huang Y, Feng S, Ballantyne CM, Wu H, Pei X, Feng X, Han M, Jiang E. CD11c participates in triggering acute graft-versus-host disease during bone marrow transplantation. Immunology 2021; 164:148-160. [PMID: 33934334 PMCID: PMC8358721 DOI: 10.1111/imm.13350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c is a canonical dendritic cell (DC) marker with poorly defined functions in the immune system. Here, we found that blocking CD11c on human peripheral blood mononuclear cell‐derived DCs (MoDCs) inhibited the proliferation of CD4+ T cells and the differentiation into IFN‐γ‐producing T helper 1 (Th1) cells, which were critical in acute graft‐versus‐host disease (aGVHD) pathogenesis. Using allogeneic bone marrow transplantation (allo‐BMT) murine models, we consistently found that CD11c‐deficient recipient mice had alleviated aGVHD symptoms for the decreased IFN‐γ‐expressing CD4+ Th1 cells and CD8+ T cells. Transcriptional analysis showed that CD11c participated in several immune regulation functions including maintaining antigen presentation of APCs. CD11c‐deficient bone marrow‐derived DCs (BMDCs) impaired the antigen presentation function in coculture assay. Mechanistically, CD11c interacted with MHCII and Hsp90 and participated in the phosphorylation of Akt and Erk1/2 in DCs after multiple inflammatory stimulations. Therefore, CD11c played crucial roles in triggering aGVHD and might serve as a potential target for the prevention and treatment of aGVHD.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiuhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
9
|
Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML, Gamperl AK. The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics 2021; 22:261. [PMID: 33845767 PMCID: PMC8042886 DOI: 10.1186/s12864-021-07464-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week- 1), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon's hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR. RESULTS Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (hsp90aa1, serpinh1), apoptosis (casp8, jund, jak2) and immune responses (apod, c1ql2, epx) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance. CONCLUSION Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
- Current Address: Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, G1V 0A6, Canada.
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
10
|
Anczurowski M, Yamashita Y, Nakatsugawa M, Ochi T, Kagoya Y, Guo T, Wang CH, Rahman MA, Saso K, Butler MO, Hirano N. Mechanisms underlying the lack of endogenous processing and CLIP-mediated binding of the invariant chain by HLA-DP 84Gly. Sci Rep 2018; 8:4804. [PMID: 29555965 PMCID: PMC5859192 DOI: 10.1038/s41598-018-22931-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
While the principles of classical antigen presentation via MHC class II are well-established, the mechanisms for the many routes of cross-presentation by which endogenous antigens become associated with class II molecules are not fully understood. We have recently demonstrated that the single amino acid polymorphism HLA-DPβ84Gly (DP84Gly) is critical to abrogate class II invariant chain associated peptide (CLIP) region-mediated binding of invariant chain (Ii) to DP, allowing endoplasmic reticulum (ER)-resident endogenous antigens to constitutively associate with DP84Gly such as DP4. In this study, we demonstrate that both the CLIP and N-terminal non-CLIP Ii regions cooperatively generate an Ii conformation that cannot associate with DP84Gly via the CLIP region. We also demonstrate the ability of DP4 to efficiently process and present antigens encoded in place of CLIP in a chimeric Ii, regardless of wild type Ii and HLA-DM expression. These data highlight the complex interplay between DP polymorphisms and the multiple Ii regions that cooperatively regulate this association, ultimately controlling the presentation of endogenous antigens on DP molecules. These results may also offer a mechanistic explanation for recent studies identifying the differential effects between DP84Gly and DP84Asp as clinically relevant in human disease.
Collapse
Affiliation(s)
- Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
11
|
Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 2016; 41:317-323. [PMID: 27833451 PMCID: PMC5099390 DOI: 10.5114/ceji.2016.63133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Heat shock proteins (HSPs) belong to the family of conservative polypeptides with a high homology of the primary structure. The uniqueness of this family lies in their ability to interact with a large number of different proteins and provide protection from cellular and environmental stress factors as molecular chaperones to keep protein homeostasis. While intracellular HSPs play a mainly protective role, extracellular or membrane-bound HSPs mediate immunological functions and immunomodulatory activity. In immune system are subsets of cells including regulatory T cells (Tregs) with suppressive functions. HSPs are implicated in the function of innate and adaptive immune systems, stimulate T lymphocyte proliferation and immunomodulatory functions, increase the effectiveness of cross-presentation of antigens, and induce the secretion of cytokines. HSPs are also important in the induction, proliferation, suppressive function, and cytokine production of Tregs, which are a subset of CD4+ T cells maintaining peripheral tolerance. Together HSPs and Tregs are potential tools for future clinical interventions in autoimmune disease.
Collapse
Affiliation(s)
- Tomasz Koliński
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Janusz Siebert
- Department of Family Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
12
|
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays prominent functional roles in nearly all aspects of cell biology. As a chaperone, it interacts with literally hundreds of "clients," many of which are important drivers, regulators, and promoters of cancer. Thus, HSP90 is a high-value target in the development of anticancer therapeutics. Despite its popularity, our overall knowledge of HSP90 in immune function has lagged behind its well-recognized tumor-supportive roles. The use of inhibitors of HSP90 as chemical biological probes has been invaluable in revealing important roles for the chaperone in multiple aspects of immune function. Given this critical link, we must now consider the question of how immune outcomes may be affected by the HSP90 inhibitors currently in clinical development for the treatment of cancer. This chapter will review some of the immunological aspects of HSP90 function in terms of its intracellular and extracellular roles in antigen presentation, immune effector cell tasks, and regulation of inflammatory processes. This review will further examine the value of HSP90 inhibitors within the context of cancer immunotherapy and will discuss how these drugs might be optimally utilized in combination with immune stimulatory approaches against cancer.
Collapse
|
13
|
Reyes-López FE, Romeo JS, Vallejos-Vidal E, Reyes-Cerpa S, Sandino AM, Tort L, Mackenzie S, Imarai M. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:210-221. [PMID: 26123889 DOI: 10.1016/j.dci.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility.
Collapse
Affiliation(s)
- Felipe E Reyes-López
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jose S Romeo
- Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Eva Vallejos-Vidal
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sebastián Reyes-Cerpa
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Ana M Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Simon Mackenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - Mónica Imarai
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| |
Collapse
|
14
|
Leung CSK. Endogenous Antigen Presentation of MHC Class II Epitopes through Non-Autophagic Pathways. Front Immunol 2015; 6:464. [PMID: 26441969 PMCID: PMC4563256 DOI: 10.3389/fimmu.2015.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022] Open
Abstract
Antigenic peptides presented by major histocompatibility complex (MHC) class II molecules are generally derived from exogenous proteins acquired by antigen presenting cells. However, in some circumstances, MHC class II molecules can present intracellular proteins expressed within the antigen-presenting cells. There are several described pathways by which endogenous antigens are degraded and gain access to MHC class II molecules. These include autophagy and other non-autophagic pathways; the latter category includes the MHC class I-like pathways, heat shock protein 90-mediated pathways, and internalization from the plasma membrane. This review will summarize and discuss the non-autophagic pathways.
Collapse
Affiliation(s)
- Carol S K Leung
- Department of Haematology, University College London Cancer Institute, University College London , London , UK
| |
Collapse
|
15
|
Bone marrow cells expressing clara cell secretory protein increase epithelial repair after ablation of pulmonary clara cells. Mol Ther 2013; 21:1251-8. [PMID: 23609017 PMCID: PMC3677308 DOI: 10.1038/mt.2013.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP(+) cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP(+) cells is beneficial after ablation of lung CCSP(+) cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP(+) or CCSP(-) BMC. Compared with mice administered CCSP(-) cells, mice treated with CCSP(+) cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP(+) cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP(+) BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP(+) BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised.
Collapse
|
16
|
Shipman M, Lubick K, Fouchard D, Guram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One 2012; 7:e41278. [PMID: 23028424 PMCID: PMC3441550 DOI: 10.1371/journal.pone.0041278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Securinine, a GABA(A) receptor antagonist, has been reported to enhance monocyte cell killing of Coxiella burnetii without obvious adverse effects in vivo. We employed multiplex 2D gel electrophoresis using Zdyes, a new generation of covalently linked fluorescent differential protein detection dyes to analyze changes in the monocyte proteome in response to Securinine. Securinine antagonism of GABA(A) receptors triggers the activation of p38. We used the differential protein expression results to guide a search of the literature and network analysis software to construct a systems biology model of the effect of Securinine on monocytes. The model suggests that various metabolic modulators (fatty acid binding protein 5, inosine 5'-monophosphate dehydrogenase, and thioredoxin) are at least partially reshaping the metabolic landscape within the monocytes. The actin bundling protein L-plastin, and the Ca(2+) binding protein S100A4 also appear to have important roles in the immune response stimulated by Securinine. Fatty acid binding protein 5 (FABP5) may be involved in effecting lipid raft composition, inflammation, and hormonal regulation of monocytes, and the model suggests that FABP5 may be a central regulator of metabolism in activated monocytes. The model also suggests that the heat shock proteins have a significant impact on the monocyte immune response. The model provides a framework to guide future investigations into the mechanisms of Securinine action and with elaboration may help guide development of new types of immune adjuvants.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chai JG. Mechanisms of endogenous MHC class II presentation by tumor cells. Immunotherapy 2012; 4:777-9. [PMID: 22947005 DOI: 10.2217/imt.12.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Tsuji T, Matsuzaki J, Caballero OL et al. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells. J. Immunol. 188, 3851-3858 (2012). In this study, Tsuji and colleagues investigated how tumor antigen NY-ESO-1 was processed by melanoma cells and subsequently presented on HLA class II for the recognition of NY-ESO-1-specific CD4(+) T cells. Using a combination of specific inhibitors and RNAi techniques, they found that tumor cells utilize a novel peptide selective antigen presentation pathway that requires both proteasome and endosomal protease-dependent processing, as well as heat-shock protein 90-dependent chaperoning. This newly described tumor-specific, endogenous MHC class II antigen presentation could have an impact on both antitumor or protumor T-cell responses.
Collapse
Affiliation(s)
- Jian-Guo Chai
- Section of Immunobiology, Department of Medicine, Imperial College London, UK.
| |
Collapse
|
18
|
Li Y, Li S, Hoshino M, Ishikawa R, Kajiwara C, Gao X, Zhao Y, Ishido S, Udono H, Wang JY. HSP90α deficiency does not affect immunoglobulin gene hypermutation and class switch but causes enhanced MHC class II antigen presentation. Int Immunol 2012; 24:751-8. [PMID: 22855849 DOI: 10.1093/intimm/dxs076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone required for efficient antigen presentation and cross-presentation. In addition, HSP90 was recently reported to interact with and stabilize the activation-induced cytidine deaminase (AID) and plays a critical role in immunoglobulin gene hypermutation and class switch recombination. In mice and humans, there are two HSP90 isoforms, HSP90α and HSP90β, but the in vivo role of each isoform remains largely unknown. Here we have analyzed humoral immune responses in HSP90α-deficient mice. We found that HSP90α deficiency did not affect AID protein expression. B cell development and maturation, as well as immunoglobulin gene hypermuation and class switch, occurred normally in HSP90α-deficient mice. However, antibody production to a T-dependent antigen was elevated in the mutant mice and this was associated with enhanced MHC class II antigen presentation to T helper cells by dendritic cells. Our results reveal a previously unidentified inhibitory role for HSP90α isoform in MHC class II antigen presentation and the humoral immune response. Along with our recent finding that HSP90α is required for antigen cross-presentation, these results suggest that HSP90α controls the balance of humoral and cellular immunity by dictating the fate of presentation of exogenous antigen.
Collapse
Affiliation(s)
- Yingqian Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University Nanjing 210061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22:407-17. [PMID: 22748206 DOI: 10.1016/j.tcb.2012.05.006] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
All cellular proteins undergo continuous synthesis and degradation. This permanent renewal is necessary to maintain a functional proteome and to allow rapid changes in levels of specific proteins with regulatory purposes. Although for a long time lysosomes were considered unable to contribute to the selective degradation of individual proteins, the discovery of chaperone-mediated autophagy (CMA) changed this notion. Here, we review the characteristics that set CMA apart from other types of lysosomal degradation and the subset of molecules that confer cells the capability to identify individual cytosolic proteins and direct them across the lysosomal membrane for degradation.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building 504, Bronx, NY 10461, USA
| | | |
Collapse
|
20
|
Oliveira RAS, Correia-Oliveira J, Tang LJ, Garcia RC. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages. Int Immunopharmacol 2012; 14:54-65. [PMID: 22705049 DOI: 10.1016/j.intimp.2012.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/31/2022]
Abstract
We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-γ-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome β type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions.
Collapse
Affiliation(s)
- Renato A S Oliveira
- Leukocyte Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | |
Collapse
|
21
|
Impairment of non-muscle myosin IIA in human CD4+ T cells contributes to functional deficits in the elderly. Cell Mol Immunol 2011; 9:86-96. [PMID: 21983869 DOI: 10.1038/cmi.2011.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physiological aging imposes significant alterations in the repertoire of T cells and all associated functions. Although several studies have reported defects upon antigen-induced activation of T cells during aging, the molecular mechanisms that control T-cell receptor (TCR) downmodulation remain to be fully defined. While previous studies have assessed the role of F-actin in regulating activation-induced TCR internalization, few have delineated the roles of motor proteins, such as non-muscle myosin IIA (NMMIIA). In this study, we describe a series of experiments supporting the hypothesis that effective TCR downmodulation requires not only efficient reorganization of the actin cytoskeleton, but also functional NMMIIA. For the first time, we show that CD4(+) T cells from elderly human donors have dysfunctional NMMIIA that contributes to delaying activation-induced TCR internalization and impairing calcium mobilization. Additionally, our results demonstrate that chemical inhibition of NMMIIA in CD4(+) T cells from young donors also results in complete abrogation of TCR internalization, strongly supporting the fundamental role of NMMIIA in modulating this event. Recent observations that the generation of an efficient T-cell response requires migration prompted us to investigate whether NMMIIA also plays a regulatory role in CD4(+) T-cell migration. We show that chemical inhibition of NMMIIA downmodulates chemotactic migration in CD4(+) T cells from both young and elderly donors. Together, these data demonstrate a significant contribution of dysfunctional NMMIIA to TCR-mediated functional defects during aging.
Collapse
|
22
|
Hubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology 2011; 13:21-35. [PMID: 21461872 DOI: 10.1007/s10522-011-9331-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Altered cellular homeostasis, accumulation of damaged non-functional organelles and presence of protein inclusions are characteristics shared by almost all types of differentiated cells in aged organisms. Cells rely on quality control mechanisms to prevent the occurrence of these events and the subsequent cellular compromise associated with them. What goes wrong in aging cells? Growing evidence supports gradual malfunctioning with age of the cellular quality control systems. In this review, we focus on autophagy, a catabolic process that contributes to the maintenance of cellular homeostasis through the degradation of unwanted and damaged components in lysosomes. We describe recent advances on the molecular characterization of this process, its different variants and the multiplicity of functions attributed to them. Autophagic dysfunction has been identified in severe human disorders, many of which worsen with age. We comment on the contribution of an adequate autophagic function to longevity, and the negative impact on health-span of the age-dependent decline in autophagic function.
Collapse
Affiliation(s)
- Vanessa M Hubbard
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone that assists in the maturation of a limited set of substrate proteins that are collectively referred to as clients. The majority of identified Hsp90 clients are involved in signal transduction, including many steroid hormone receptors and kinases. A handful of Hsp90 clients can be classified as nonsignal transduction proteins, including telomerase, cystic fibrosis transmembrane conductance regulator, and antigenic peptides destined for major histocompatibility complex. Because Hsp90 clients are causative agents in cancer and cystic fibrosis, research on Hsp90 has intensified in recent years. We review the historical path of Hsp90 research within each class of client (kinase, hormone receptor, and nonsignal transduction clients) and highlight current areas of active investigation.
Collapse
|
24
|
Abstract
Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway.
Collapse
|
25
|
Fischer N, Haug M, Kwok WW, Kalbacher H, Wernet D, Dannecker GE, Holzer U. Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. Eur J Immunol 2010; 40:986-97. [PMID: 20101615 DOI: 10.1002/eji.200939738] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hsp70 plays several roles in the adaptive immune response. Based on the ability to interact with diverse peptides, extracellular Hsp70:peptide complexes exert profound effects both in autoimmunity and in tumor rejection by evoking potent T cell responses to the chaperoned peptide. The interaction with receptors on APC represents the basis for the immunological functions of Hsp70 and a critical point where the immune response can be regulated. Various surface proteins (e.g. CD91, scavenger receptors (SR)) have been implicated in binding of Hsp70. In this study, antigenic peptides from tetanus toxin and influenza hemagglutinin complexed to human stress-inducible Hsp70 were found to enhance the proliferation and cytokine production of human antigen-specific CD4(+) T cells. This was demonstrated in proliferation experiments using human monocytes as APC. Proliferated antigen-specific cells were detected combining HLA-DRB1*0401 or HLA-DRB1*1101 tetramer and CFSE staining. Treating monocytes with CD91 siRNA diminished these effects. Additional blocking of SR by the SR ligand fucoidan completely abolished enhanced proliferation and production of Th1 and Th2 cytokines. Taken together, our data indicate that in the human system, CD91 and members of the SR family efficiently direct Hsp70:peptide complexes into the MHC class II presentation pathway and thus enhance antigen-specific CD4(+) T cell responses.
Collapse
Affiliation(s)
- Nadja Fischer
- Children's Hospital, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
27
|
Udono H, Ichiyanagi T, Mizukami S, Imai T. Heat shock proteins in antigen trafficking–Implications on antigen presentation to T cells. Int J Hyperthermia 2009; 25:617-25. [DOI: 10.3109/02656730902902183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Houlihan JL, Metzler JJ, Blum JS. HSP90alpha and HSP90beta isoforms selectively modulate MHC class II antigen presentation in B cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7451-8. [PMID: 19494268 DOI: 10.4049/jimmunol.0804296] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two isoforms of heat shock protein (HSP) 90, alpha and beta, are abundantly expressed in the cytoplasm of cells, yet only HSP90alpha serves as a chaperone to potentiate epitope presentation in the context of MHC class I molecules. By contrast, the role of HSP90 isoforms in MHC class II presentation of exogenous and endogenous Ags remains less clear. Studies here using human B lymphoblasts demonstrate the importance of HSP90alpha and HSP90beta isoforms in selectively regulating class II presentation of the diabetes autoantigen glutamic acid decarboxylase (GAD). Inactivation of HSP90 function using geldanamycin or radicicol inhibited MHC class II presentation of exogenous and endogenous GAD, but did not perturb the presentation of several other intra- and extracellular Ags. Treatment of human B cells with geldanamycin and radicicol did not alter cellular MHC class II expression, but did induce a stress response in these APCs. Yet, cell stress alone failed to perturb MHC class II presentation of GAD. HSP90 was found to associate with select Ags such as GAD in cells and ex vivo. Knockdown of HSP90alpha or HSP90beta expression using small interfering RNA decreased the abundance of each isoform, respectively, but did not affect MHC class II expression or induce a stress response. Notably, disruption of HSP90alpha or HSP90beta expression specifically inhibited class II presentation of the exogenous and endogenous GAD Ag. Precomplexing HSP90 with GAD Ag enhanced exogenous GAD Ag presentation. These results demonstrate a requirement for HSP90alpha and HSP90beta in regulating class II presentation of select Ags.
Collapse
Affiliation(s)
- Josetta L Houlihan
- Department of Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
29
|
|
30
|
Abstract
Almost 60 years ago, the pioneering work of George Klein and others showed that cancers could be made targets for the immune system. Identification of the tumor targets, known as tumor antigens, became a focus in cancer biology that led to the discovery of the immunological properties of heat-shock proteins (HSPs) in 1986 by Pramod Srivastava and colleagues. Since then, the use of HSPs in the therapeutics of cancer and infectious disease in several clinical trials has been guided by our understanding of the role and effects of HSPs in adaptive and innate immune responses, investigated primarily in mice. This review will highlight the immunological properties of HSPs as we understand them today and review the clinical work on human cancers. Several Phase I and II clinical trials in different types of cancer that have been completed, as well as ongoing Phase III trials, will be summarized.
Collapse
Affiliation(s)
- Robert J Binder
- University of Pittsburgh, E1051, BSTWR, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Abstract
Stress proteins or heat shock proteins (HSPs) are ubiquitous cellular components that have long been known to act as molecular chaperones. By assisting proper folding and transport of proteins, and by assisting in the degradation of aberrant proteins, they play key roles in cellular metabolism. The frequent accumulation of insoluble protein aggregates during chronic neurodegenerative disorders suggests failure of HSP functions to be a common denominator among such diseases. Recent developments have clarified that functions of HSPs extend well beyond their role in protein folding and degradation alone. Stress-inducible HSPs also regulate apoptosis, antigen presentation, inflammatory signalling pathways and, intriguingly, also serve as extracellular mediators of inflammation. Several receptors have been identified for extracellular HSPs, which control inflammatory pathways similar to those activated by cytokines and chemokines. In this review, both the traditional and the exciting novel functions of HSPs are discussed, with a focus on their relevance for neurodegeneration and neuroinflammation. Recent advances in this field suggest that HSPs represent attractive novel targets as well as therapeutic entities for CNS disorders.
Collapse
Affiliation(s)
- J M van Noort
- Department of Biosciences, TNO Quality of Life, PO Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
32
|
Negroni L, Samson M, Guigonis JM, Rossi B, Pierrefite-Carle V, Baudoin C. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation. Mol Cancer Ther 2008; 6:2747-56. [PMID: 17938268 DOI: 10.1158/1535-7163.mct-07-0040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Amino Acid Sequence
- Animals
- Annexin A5/metabolism
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Cytosine Deaminase/genetics
- Electrophoresis, Gel, Two-Dimensional
- Flucytosine/therapeutic use
- Gene Transfer Techniques
- Genes, Transgenic, Suicide
- Genetic Therapy
- Genetic Vectors
- HSP90 Heat-Shock Proteins/metabolism
- Molecular Sequence Data
- Phosphorylation
- Proteome/metabolism
- Rats
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transduction, Genetic
- Tumor Cells, Cultured/drug effects
Collapse
|
33
|
Szerafin T, Hoetzenecker K, Hacker S, Horvath A, Pollreisz A, Arpád P, Mangold A, Wliszczak T, Dworschak M, Seitelberger R, Wolner E, Ankersmit HJ. Heat shock proteins 27, 60, 70, 90alpha, and 20S proteasome in on-pump versus off-pump coronary artery bypass graft patients. Ann Thorac Surg 2008; 85:80-7. [PMID: 18154785 DOI: 10.1016/j.athoracsur.2007.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/13/2007] [Accepted: 06/15/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The secretion of heat shock protein (HSP) 27, HSP60, HSP70, HSP90alpha, 20S proteasome, and their correlations to proinflammatory cytokine interleukin-6 is unknown in patients undergoing on-pump versus off-pump coronary artery bypass graft (CABG) operation. METHODS Forty patients were included in this explorative study (on- versus off-pump CABG, each n = 20). Serum samples were obtained before and 30 minutes, 60 minutes, and 24 hours after CABG operation. Enzyme-linked immunosorbent assay technique was utilized to determine soluble HSP27, 60, 70, and 90alpha, 20S proteasome, and levels of interleukin-6. RESULTS Serum levels of HSP are increased in patients undergoing on-pump CABG operation as compared with off-pump CABG technique. These differences were highly significant for HSP27, 70, and 90alpha at 60 minutes after initiation of cardiopulmonary bypass (all, p < 0.001). Concentrations of soluble 20S proteasome were increased 24 hours after operation in on- and off-pump CABG patients (p < 0.001) and correlated significantly with the serum content of HSP 27, 70, and 90alpha at 60 minutes after initiation of cardiopulmonary bypass (p < 0.001). No correlation was found when comparing interleukin-6 levels with intravascular leakage of HSP and 20S proteasome after CABG operation. CONCLUSIONS We conclude from our data that the innate immune system is activated owing to spillage of known immune modulatory and apoptosis-associated proteins after CABG operation.
Collapse
Affiliation(s)
- Tamas Szerafin
- Department of Cardiac Surgery, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Strawbridge AB, Blum JS. Autophagy in MHC class II antigen processing. Curr Opin Immunol 2007; 19:87-92. [PMID: 17129719 DOI: 10.1016/j.coi.2006.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Durable adaptive immunity is dependent upon CD4 T-cell recognition of MHC class II molecules that display peptides from exogenous and endogenous antigens. Endogenously expressed cytosolic and nuclear antigens access MHC class II by way of several intracellular autophagic routes. These pathways include macroautophagy, microautophagy and chaperone-mediated autophagy. Macroautophagy can deliver antigens into autophagosomes for processing by acidic proteases before MHC class II presentation. However, other endogenous antigens are processed by cytoplasmic proteases, yielding fragments that translocate via chaperone-mediated autophagy into the endosomal network to intersect MHC class II. Cross-talk between autophagy pathways, particularly in response to stress, appears to balance the relative efficiency of each pathway. This might limit redundancy, giving MHC class II broader access to antigens within intracellular compartments distinct from the endosomal network.
Collapse
Affiliation(s)
- Andrew B Strawbridge
- Department of Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, 635 Barnhill Drive, MS420, Indianapolis, IN 46202, USA
| | | |
Collapse
|