1
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
3
|
Weber F, Junger H, Werner JM, Velez Char N, Rejas C, Schlitt HJ, Hornung M. Increased cytoplasmatic expression of cancer immune surveillance receptor CD1d in anaplastic thyroid carcinomas. Cancer Med 2019; 8:7065-7073. [PMID: 31560833 PMCID: PMC6853836 DOI: 10.1002/cam4.2573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinomas are associated with rapid tumor growth, short survival time and without any promising therapy to improve the poor prognosis. In this study, expression of immunoregulative receptor CD1d and lymphocyte infiltration in different thyroid tumors as well as in healthy tissue were analyzed in order to find new targets for an immunotherapeutic approach. METHODS CD1d immunohistochemistry was performed in samples of 18 anaplastic, 17 follicular, 27 papillary, and 4 medullary thyroid carcinomas as well as in 19 specimens from normal thyroid tissue and additionally in 10 samples of sarcoma, seven malignant melanoma and three spindle-cell lung carcinoma. Furthermore, thyroid samples were stained with antibodies against CD3, CD20, CD56, CD68, and LCA in order to analyze lymphocyte infiltration. RESULTS For the first time CD1d receptor expression on normal thyroid tissue could be demonstrated. Moreover, anaplastic thyroid carcinomas showed significantly higher expression levels compared to other thyroid samples. Most astonishingly, CD1d expression disappeared from the cellular surface and was detected rather in the cytoplasm of anaplastic thyroid carcinoma cells. In addition, histologically similar tumors to anaplastic carcinoma like sarcoma and malignant melanoma revealed distinct CD1d staining patterns. Furthermore, infiltration of T cells, B cells, and macrophages in anaplastic thyroid carcinomas was different when compared to normal thyroid tissue and all other thyroid carcinomas. CONCLUSIONS Anaplastic thyroid carcinomas show significantly higher expression of CD1d, a receptor for NKT cells, which are subject of several anticancer therapy studies. These results may offer a novel approach to explore immunotherapeutic treatment options.
Collapse
Affiliation(s)
- Florian Weber
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Natalia Velez Char
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Carolina Rejas
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Hornung
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Lee SW, Park HJ, Cheon JH, Wu L, Van Kaer L, Hong S. iNKT Cells Suppress Pathogenic NK1.1 +CD8 + T Cells in DSS-Induced Colitis. Front Immunol 2018; 9:2168. [PMID: 30333822 PMCID: PMC6176072 DOI: 10.3389/fimmu.2018.02168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
T cells producing IFNγ play a pathogenic role in the development of inflammatory bowel disease (IBD). To investigate the functions of CD1d-dependent invariant natural killer T (iNKT) cells in experimental colitis induced in Yeti mice with dysregulated expression of IFNγ, we generated iNKT cell-deficient Yeti/CD1d KO mice and compared colitis among WT, CD1d KO, Yeti, and Yeti/CD1d KO mice following DSS treatment. We found that deficiency of iNKT cells exacerbated colitis and disease pathogenesis was mainly mediated by NK1.1+CD8+ T cells. Furthermore, the protective effects of iNKT cells correlated with up-regulation of regulatory T cells. Taken together, our results have demonstrated that CD1d-dependent iNKT cells and CD1d-independent NK1.1+CD8+ T cells reciprocally regulate the development of intestinal inflammatory responses mediated by IFNγ-dysregulation. These findings also identify NK1.1+CD8+ T cells as novel target cells for the development of therapeutics for human IBD.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| |
Collapse
|
5
|
Murine DX5 +NKT Cells Display Their Cytotoxic and Proapoptotic Potentials against Colitis-Inducing CD4 +CD62L high T Cells through Fas Ligand. J Immunol Res 2018; 2018:8175810. [PMID: 30364054 PMCID: PMC6186349 DOI: 10.1155/2018/8175810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction It has been previously shown that immunoregulatory DX5+NKT cells are able to prevent colitis induced by CD4+CD62Lhigh T lymphocytes in a SCID mouse model. The aim of this study was to further investigate the underlying mechanism in vitro. Methods CD4+CD62Lhigh and DX5+NKT cells from the spleen of Balb/c mice were isolated first by MACS, followed by FACS sorting and cocultured for up to 96 h. After polyclonal stimulation with anti-CD3, anti-CD28, and IL-2, proliferation of CD4+CD62Lhigh cells was assessed using a CFSE assay and activity of proapoptotic caspase-3 was determined by intracellular staining and flow cytometry. Extrinsic apoptotic pathway was blocked using an unconjugated antibody against FasL, and activation of caspase-3 was measured. Results As previously shown in vivo, DX5+NKT cells inhibit proliferation of CD4+CD62Lhigh cells in vitro after 96 h coculture compared to a CD4+CD62Lhigh monoculture (proliferation index: 1.39 ± 0.07 vs. 1.76 ± 0.12; P = 0.0079). The antiproliferative effect of DX5+NKT cells was likely due to an induction of apoptosis in CD4+CD62Lhigh cells as evidenced by increased activation of the proapoptotic caspase-3 after 48 h (38 ± 3% vs. 28 ± 3%; P = 0.0451). Furthermore, DX5+NKT cells after polyclonal stimulation showed an upregulation of FasL on their cell surface (15 ± 2% vs. 2 ± 1%; P = 0.0286). Finally, FasL was blocked on DX5+NKT cells, and therefore, the extrinsic apoptotic pathway abrogated the activation of caspase-3 in CD4+CD62Lhigh cells. Conclusion Collectively, these data confirmed that DX5+NKT cells inhibit proliferation of colitis-inducing CD4+CD62Lhigh cells by induction of apoptosis. Furthermore, DX5+NKT cells likely mediate their cytotoxic and proapoptotic potentials via FasL, confirming recent reports about iNKT cells. Further studies will be necessary to evaluate the therapeutical potential of these immunoregulatory cells in patients with colitis.
Collapse
|
6
|
Mortier C, Govindarajan S, Venken K, Elewaut D. It Takes "Guts" to Cause Joint Inflammation: Role of Innate-Like T Cells. Front Immunol 2018; 9:1489. [PMID: 30008717 PMCID: PMC6033969 DOI: 10.3389/fimmu.2018.01489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut-joint disease.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Srinath Govindarajan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Beswick EJ, Grim C, Singh A, Aguirre JE, Tafoya M, Qiu S, Rogler G, McKee R, Samedi V, Ma TY, Reyes VE, Powell DW, Pinchuk IV. Expression of Programmed Death-Ligand 1 by Human Colonic CD90 + Stromal Cells Differs Between Ulcerative Colitis and Crohn's Disease and Determines Their Capacity to Suppress Th1 Cells. Front Immunol 2018; 9:1125. [PMID: 29910803 PMCID: PMC5992387 DOI: 10.3389/fimmu.2018.01125] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background and Aims The role of programmed cell death protein 1 (PD-1) and its ligands in the dysregulation of T helper immune responses observed in the inflammatory bowel disease (IBD) is unclear. Recently, a novel concept emerged that CD90+ colonic (myo)fibroblasts (CMFs), also known as stromal cells, act as immunosuppressors, and are among the key regulators of acute and chronic inflammation. The objective of this study was to determine if the level of the PD-1 ligands is changed in the IBD inflamed colonic mucosa and to test the hypothesis that changes in IBD-CMF-mediated PD-1 ligand-linked immunosuppression is a mechanism promoting the dysregulation of Th1 cell responses. Methods Tissues and cells derived from Crohn's disease (CD), ulcerative colitis (UC), and healthy individuals (N) were studied in situ, ex vivo, and in culture. Results A significant increase in programmed death-ligand 1 (PD-L1) was observed in the inflamed UC colonic mucosa when compared to the non-inflamed matched tissue samples, CD, and healthy controls. UC-CMFs were among the major populations in the colonic mucosa contributing to the enhanced PD-L1 expression. In contrast, PD-L1 expression was decreased in CD-CMFs. When compared to CD-CMFs and N-CMFs, UC-CMFs demonstrated stronger suppression of IL-2, Th1 transcriptional factor Tbet, and IFN-γ expression by CD3/CD28-activated CD4+ T cells, and this process was PD-L1 dependent. Similar observations were made when differentiated Th1 cells were cocultured with UC-CMFs. In contrast, CD-CMFs showed reduced capacity to suppress Th1 cell activity and addition of recombinant PD-L1 Fc to CD-CMF:T cell cocultures partially restored the suppression of the Th1 type responses. Conclusion We present evidence showing that increased PD-L1 expression suppresses Th1 cell activity in UC. In contrast, loss of PD-L1 expression observed in CD contributes to the persistence of the Th1 inflammatory milieu in CD. Our data suggest that dysregulation of the Th1 responses in the inflamed colonic mucosa of IBD patients is promoted by the alterations in PD-L1 expression in the mucosal mesenchymal stromal cell compartment.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
| | - Carl Grim
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Abinav Singh
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose E Aguirre
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Marissa Tafoya
- Department of Pathology, University of New Mexico, Albuquerque, NM, United States
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Zürich, Switzerland
| | - Rohini McKee
- Department of Surgery, University of New Mexico, Albuquerque, NM, United States
| | - Von Samedi
- Department of Pathology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Y Ma
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
| | - Victor E Reyes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Don W Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic intestinal inflammatory disorder characterized by diffuse accumulation of lymphocytes in the gut mucosa as a consequence of over-expression of endothelial adhesion molecules. The infiltrating lymphocytes have been identified as subsets of T cells, including T helper (Th)1 cells, Th17 cells, and regulatory T cells. The function of these lymphocyte subpopulations in the development of IBD is well-known, since they produce a number of pro-inflammatory cytokines, such as interferon-γ and interleukin-17A, which in turn activate mucosal proteases, thus leading to the development of intestinal lesions, i.e., ulcers, fistulas, abscesses, and strictures. However, the immune mechanisms underlying IBD are not yet fully understood, and knowledge about the function of newly discovered lymphocytes, including Th9 cells, innate lymphoid cells, mucosal-associated invariant T cells, and natural killer T cells, might add new pieces to the complex puzzle of IBD pathogenesis. This review summarizes the recent advances in the understanding of the role of mucosal lymphocytes in chronic intestinal inflammation and deals with the therapeutic potential of lymphocyte-targeting drugs in IBD patients.
Collapse
|
9
|
Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, Guttman DS, Streutker CJ, Robertson SJ, Philpott DJ, Mallevaey T. NKT Cell–Deficient Mice Harbor an Altered Microbiota That Fuels Intestinal Inflammation during Chemically Induced Colitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4464-4472. [DOI: 10.4049/jimmunol.1601410] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
10
|
Zhou H, Xiong L, Wang Y, Ding L, Hu S, Zhao M, Zhou L. Treatment of murine lupus with PD-LIg. Clin Immunol 2016; 162:1-8. [DOI: 10.1016/j.clim.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
11
|
Coursey TG, Bohat R, Barbosa FL, Pflugfelder SC, de Paiva CS. Desiccating stress-induced chemokine expression in the epithelium is dependent on upregulation of NKG2D/RAE-1 and release of IFN-γ in experimental dry eye. THE JOURNAL OF IMMUNOLOGY 2014; 193:5264-72. [PMID: 25288568 DOI: 10.4049/jimmunol.1400016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Th1-associated chemokines CXCL9, CXCL10, and CXCL11 coordinate migration of CXCR3(+) Th1 cells. The objective of this study was to evaluate the role of the innate immune system in stimulating chemokine expression in an experimental model of dry eye and bridge the gap between innate and adaptive immunity. Desiccating stress (DS) induced very early (6 h) expression and production of Th1-associated chemokines in cornea and conjunctiva of C57BL/6 and RAG1 knockout (KO) mice, demonstrating that chemokine expression does not require innate T cells. We then demonstrated that activating the innate immune system prior to adoptive transfer of T cells to RAG1KO mice increased disease severity. Interestingly, lack of induction of chemokines CXCL9, CXCL10, and CXCL11 in IFN-γKO mice provided evidence that their expression requires IFN-γ for induction. Treatment of RAG1KO mice with anti-NK1.1 prevented the increase of CXCL9, CXCL10, and CXCL11 in response to DS, compared with isotype controls. Additionally, DS increased the expression of NKG2D in the conjunctiva. The expression of the NKG2D ligand, retinoic acid early inducible gene 1, also increased at the ocular surface at both the protein and gene levels. Neutralization of NKG2D at the ocular surface decreased the expression of CXCL9, CXCL10, CXCL11, and IFN-γ. In summary, upregulation of CXCL9, CXCL10, and CXCL11 expression in experimental dry eye is T cell-independent, requiring IFN-γ-producing NKG2D(+) NK cells that are activated in response to DS-induced stress signals. This study provides insight into the events that trigger the initial immune response in dry eye pathology.
Collapse
Affiliation(s)
- Terry G Coursey
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Ritu Bohat
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
12
|
Abstract
: Crohn's disease (CD) is a lifelong inflammatory condition with underlying environmental and genetic components. CD affects multiple parts of the gastrointestinal tract, and it has a growing incidence in Western societies. IL-23 receptor variants have been identified as susceptibility or resistance factors for CD in genome-wide association studies. Accordingly, IL-23 is required for the development of experimental inflammatory bowel disease in many murine models. IL-23 receptor is expressed by both innate and adaptive immune cells, which include Th17, natural killer T, γδ T cells, and RORγt innate lymphoid cells all of which are capable of secreting IL-17A, IL-17F, IL-22, and interferon-γ upon IL-23 stimulation. During the past decade, pathogenic and protective roles have been described for these cytokines in the inflammatory bowel disease pathogenesis. More recently, innate lymphoid cells have been implicated in disease development. In this review, we have summarized and discussed these findings with an emphasis not only on the contribution of Th17 but also on innate lymphoid cells to disease etiology.
Collapse
Affiliation(s)
- Ahmet Eken
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
| | - Akhilesh K Singh
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
| | - Mohamed Oukka
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
- University of Washington, Department of Immunology, Seattle, WA 98105, USA
| |
Collapse
|
13
|
Shi SJ, Wang LJ, Wang GD, Guo ZY, Wei M, Meng YL, Yang AG, Wen WH. B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. PLoS One 2013; 8:e76012. [PMID: 24124529 PMCID: PMC3790819 DOI: 10.1371/journal.pone.0076012] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Background And Objective The investigation concerning the B7-H1 expression in colorectal cancer cells is at an early stage. It is unclear whether B7-H1 expression may have diagnostic or prognostic value in colorectal carcinoma. Additionally, how B7-H1 is associated with the clinical features of colorectal carcinoma is not known. In order to investigate the relationship between B7-H1 and colorectal cancer, we analyzed B7-H1 expression and its effect in clinical specimens and HCT116 cells. Methods Paraffin-embedded specimens from 143 eligible patients were used to investigate the expression of CD274 by immunohistochemistry. We also examined whether B7-H1 itself may be related to cell proliferation, apoptosis, migration and invasion in colon cancer HCT116 cells. Results Our results show that B7-H1 was highly expressed in colorectal carcinoma and was significantly associated with cell differentiation status and TNM (Tumor Node Metastasis) stage. Patients with positive B7-H1 expression showed a trend of shorter survival time. Using multivariate analysis, we demonstrate that positive B7-H1 expression is an independent predictor of colorectal carcinoma prognosis. Our results indicate that B7-H1 silencing with siRNA inhibits cell proliferation, migration and invasion. Furthermore, cell apoptosis was also increased by B7-H1 inhibition. Conclusions Positive B7-H1 expression is an independent predictor for colorectal carcinoma prognosis. Moreover, knockdown of B7-H1 can inhibit cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Li-Juan Wang
- Department of Oncology, the First Affiliated Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Guo-Dong Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Comprehensive Medicine, 323 Hospital of the Chinese People’s Liberation Army, Xi’an, China
| | - Zhang-Yan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Ming Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan-Ling Meng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- * E-mail: (WW); (AY)
| | - Wei-Hong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- * E-mail: (WW); (AY)
| |
Collapse
|
14
|
Abstract
CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines on activation and play a critical role in regulating various immune responses. NKT cells are classified into 2 groups based on differences in T-cell receptor usage. Type I NKT cells have an invariant T-cell receptor α-chain and are readily detectable by α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. Type II NKT cells have a more diverse T-cell receptor repertoire and cannot be directly identified. Both types of NKT cells and multiple CD1d-expressing cell types are present in the intestine, and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease, type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in patients with ulcerative colitis, and a mouse model in which both CD1d expression and the frequency of type II NKT cells are increased, type II NKT cells seem to promote intestinal inflammation. In this review, we summarize the present knowledge on the antigen recognition, activation, and function of NKT cells with a particular focus on their role in inflammatory bowel disease and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation.
Collapse
|
15
|
IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol 2013; 6:347-57. [PMID: 22892939 DOI: 10.1038/mi.2012.77] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the T-helper type 9 (Th9) subset has recently been revisited, interleukin (IL)-9-producing invariant natural killer T (iNKT) cells remain poorly characterized. Moreover, whether IL-9-producing iNKT cells regulate colitis is unknown. Here, we investigated functions of IL-9-producing iNKT cells in dextran sulfate sodium (DSS)-induced colitis. Wild-type (WT) mice attenuated colitis compared to Jα18(-/-) mice, which were restored by the adoptive transfer of WT, but not IL-4-deficient iNKT cells. IL-4-deficient iNKT cells failed to produce IL-9, which was reversed by recombinant IL-4. Furthermore, iNKT cells, pre-incubated with anti-CD3+CD28 monoclonal antibodies and IL-4+tumor growth factor (TGF)-β (IL-9(+) iNKT), suppressed colitis in Jα18(-/-) mice, whereas pre-incubated IL-4-deficient iNKT cells did not. IL-9 blockade reversed IL-9(+) iNKT cell-mediated colitis by increasing colonic IL-17A and interferon (IFN)-γ transcripts, but decreasing IL-9, IL-10, TGF-β, PU.1, IFN regulatory factor 4, and signal transducer and activator of transcription 5 in Jα18(-/-) mice. In conclusion, IL-9-producing iNKT cells protect against DSS-induced colitis through IFN-γ and IL-17A suppression, but IL-10 and TGF-β enhancement, depending on the IL-4 production by iNKT cells.
Collapse
|
16
|
NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One 2012; 7:e36822. [PMID: 22590618 PMCID: PMC3348128 DOI: 10.1371/journal.pone.0036822] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The conjunctiva contains a specialized population of lymphocytes that reside in the epithelium, named intraepithelial lymphocytes (IEL). METHODOLOGY/PRINCIPAL FINDINGS Here we characterized the IEL population prior to and after experimental desiccating stress (DS) for 5 or 10 days (DS5, DS10) and evaluated the effect of NK depletion on DS. The frequency of IELs in normal murine conjunctiva was CD3(+)CD103(+) (~22%), CD3(+)γδ(+) (~9.6%), CD3(+)NK(+) (2%), CD3(-)NK(+) (~4.4%), CD3(+)CD8α (~0.9%), and CD4 (~0.6%). Systemic depletion of NK cells prior and during DS led to a decrease in the frequency of total and activated DCs, a decrease in T helper-17(+) cells in the cervical lymph nodes and generation of less pathogenic CD4(+)T cells. B6.nude recipient mice of adoptively transferred CD4(+)T cells isolated from NK-depleted DS5 donor mice showed significantly less corneal barrier disruption, lower levels of IL-17A, CCL20 and MMP-3 in the cornea epithelia compared to recipients of control CD4(+)T cells. CONCLUSIONS/SIGNIFICANCE Taken together, these results show that the NK IELs are involved in the acute immune response to desiccation-induced dry eye by activating DC, which in turn coordinate generation of the pathogenic Th-17 response.
Collapse
|
17
|
Liao CM, Zimmer MI, Shanmuganad S, Yu HT, Cardell SL, Wang CR. dysregulation of CD1d-restricted type ii natural killer T cells leads to spontaneous development of colitis in mice. Gastroenterology 2012; 142:326-34.e1-2. [PMID: 22057113 PMCID: PMC3267843 DOI: 10.1053/j.gastro.2011.10.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS CD1d-restricted natural killer (NK) T cells are a subset of immunoregulatory T cells that comprise type I (express the semi-invariant T-cell receptor [TCR] and can be detected using the α-galactosylceramide/CD1d tetramer) and type II (express diverse TCRs and cannot be directly identified). Studies in mouse models of inflammatory bowel disease revealed a complex role for type I NKT cells in the development of colitis. Type II NKT cells have been associated with intestinal inflammation in patients with ulcerative colitis. METHODS To investigate whether dysregulation of type II NKT cells, caused by increased expression of CD1d, can contribute to colitis, we generated transgenic mice that express high levels of CD1d and a TCR from an autoreactive, type II NKT cell (CD1dTg/24αβTg mice). RESULTS CD1dTg/24αβTg mice had reduced numbers of 24αβ T cells compared with 24αβTg mice, indicating that negative selection increases among type II NKT cells engaged by abundant self-antigen. The residual 24αβ T cells in CD1dTg/24αβTg mice had an altered surface phenotype and acquired a cytokine profile distinct from that of equivalent cells in 24αβTg mice. Interestingly, CD1dTg/24αβTg mice spontaneously developed colitis; adoptive transfer experiments confirmed that type II NKT cells that develop in the context of increased CD1d expression are pathogenic. CONCLUSIONS Aberrant type II NKT cell responses directly contribute to intestinal inflammation in mice, indicating the importance of CD1d expression levels in the development and regulation of type II NKT cells.
Collapse
Affiliation(s)
- Chia-Min Liao
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA,Institute of Zoology and Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Michael I. Zimmer
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Sharmila Shanmuganad
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Hon-Tsen Yu
- Institute of Zoology and Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Abstract
The characterization of functional CD8(+) inhibitory or regulatory T cells and their gene regulation remains a critical challenge in the field of tolerance and autoimmunity. Investigating the genes induced in regulatory cells and the regulatory networks and pathways that underlie mechanisms of immune resistance and prevent apoptosis in the CD8(+) T cell compartment are crucial to understanding tolerance mechanisms in systemic autoimmunity. Little is currently known about the genetic control that governs the ability of CD8(+) Ti or regulatory cells to suppress anti-DNA Ab production in B cells. Silencing genes with siRNA or shRNA and overexpression of genes with lentiviral cDNA transduction are established approaches to identifying and understanding the function of candidate genes in tolerance and immunity. Elucidation of interactions between genes and proteins, and their synergistic effects in establishing cell-cell cross talk, including receptor modulation/antagonism, are essential for delineating the roles of these cells. In this review, we will examine recent reports which describe the modulation of cells from lupus prone mice or lupus patients to confer anti-inflammatory and protective gene expression and novel associated phenotypes. We will highlight recent findings on the role of selected genes induced by peptide tolerance in CD8(+) Ti.
Collapse
|
19
|
Hornung M, Werner JM, Farkas S, Schlitt HJ, Geissler EK. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells. Int J Colorectal Dis 2011; 26:1423-33. [PMID: 21647599 DOI: 10.1007/s00384-011-1249-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. METHODS DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. RESULTS Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. CONCLUSIONS These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.
Collapse
Affiliation(s)
- Matthias Hornung
- Department of Surgery, University Hospital Regensburg, University of Regensburg, 93042, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Werner JM, Busl E, Farkas SA, Schlitt HJ, Geissler EK, Hornung M. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice. BMC Immunol 2011; 12:26. [PMID: 21529347 PMCID: PMC3097004 DOI: 10.1186/1471-2172-12-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 04/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer T cells represent a linkage between innate and adaptive immunity. They are a heterogeneous population of specialized T lymphocytes composed of different subsets. DX5+NKT cells are characterized by expression of the NK cell marker DX5 in the context of CD3. However, little is known about the phenotype and functional capacity of this unique cell population. Therefore, we investigated the expression of several T cell and NK cell markers, as well as functional parameters in spleen and liver subsets of DX5+NKT cells in NK1.1- Balb/c mice and compared our findings to NK1.1+ C57Bl/6 mice. RESULTS In the spleen 34% of DX5+NKT cells expressed CD62L and they up-regulated the functional receptors CD154 as well as CD178 upon activation. In contrast, only a few liver DX5+NKT cells expressed CD62L, and they did not up-regulate CD154 upon activation. A further difference between spleen and liver subsets was observed in cytokine production. Spleen DX5+NKT cells produced more Th1 cytokines including IL-2, IFN-γ and TNF-α, while liver DX5+NKT cells secreted more Th2 cytokines (e.g. IL-4) and even the Th17 cytokine, IL-17a. Furthermore, we found inter-strain differences. In NK1.1+ C57Bl/6 mice DX5+NKT cells represented a distinct T cell population expressing less CD4 and more CD8. Accordingly, these cells showed a CD178 and Th2-type functional capacity upon activation. CONCLUSION These results show that DX5+NKT cells are a heterogeneous population, depending on the dedicated organ and mouse strain, that has diverse functional capacity.
Collapse
Affiliation(s)
- Jens M Werner
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Oh K, Byoun OJ, Ham DI, Kim YS, Lee DS. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation. Eur J Immunol 2010; 41:392-402. [PMID: 21268009 DOI: 10.1002/eji.201040569] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/29/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The immune system is pivotal in mediating the interactions between host and microbiota that shape the intestinal environment. Intestinal homeostasis arises from a highly dynamic balance between host protective immunity and regulatory mechanisms. This regulation is achieved by a number of cell populations acting through a set of shared regulatory pathways. In this review, we summarize the main lymphocyte subsets controlling immune responsiveness in the gut and their mechanisms of control, which involve maintenance of intestinal barrier function and suppression of chronic inflammation. CD4(+)Foxp3(+) T cells play a nonredundant role in the maintenance of intestinal homeostasis through IL-10- and TGF-beta-dependent mechanisms. Their activity is complemented by other T and B lymphocytes. Because breakdown in immune regulatory networks in the intestine leads to chronic inflammatory diseases of the gut, such as inflammatory bowel disease and celiac disease, regulatory lymphocytes are an attractive target for therapies of intestinal inflammation.
Collapse
Affiliation(s)
- Ana Izcue
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | | | | |
Collapse
|
23
|
Wingender G, Kronenberg M. Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1-8. [PMID: 17947447 DOI: 10.1152/ajpgi.00437.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lymphocytes that combine features of T cells and natural killer (NK) cells are named natural killer T (NKT) cells. The majority of NKT cells in mice bear highly conserved invariant Valpha chains, and to date two populations of such canonical NKT cells are known in mice: those that express Valpha14 and those that express Valpha7.2. Both populations are selected by nonpolymorphic major histocompatibility complex class I-like antigen-presenting molecules expressed by hematopoietic cells in the thymus: CD1d for Valpha14-expressing NKT cells and MR1 for those cells expressing Valpha7.2. The more intensely studied Valpha14 NKT cells have been implicated in diverse immune reactions, including immune regulation and inflammation in the intestine; the Valpha7.2 expressing cells are most frequently found in the lamina propria. In humans, populations of canonical NKT cells are found to be highly similar in terms of the expression of homologous, invariant T cell antigen-receptor alpha-chains, specificity, and function, although their frequency differs from those in the mouse. In this review, we will focus on the role of both of these canonical NKT cell populations in the mucosal tissues of the intestine.
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92037, USA
| | | |
Collapse
|
24
|
Abstract
Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, deliver inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. Immune responses to foreign and self-antigens require specific and balanced responses to clear pathogens and tumors and yet maintain tolerance. Induction and maintenance of T cell tolerance requires PD-1, and its ligand PD-L1 on nonhematopoietic cells can limit effector T cell responses and protect tissues from immune-mediated tissue damage. The PD-1:PD-L pathway also has been usurped by microorganisms and tumors to attenuate antimicrobial or tumor immunity and facilitate chronic infection and tumor survival. The identification of B7-1 as an additional binding partner for PD-L1, together with the discovery of an inhibitory bidirectional interaction between PD-L1 and B7-1, reveals new ways the B7:CD28 family regulates T cell activation and tolerance. In this review, we discuss current understanding of the immunoregulatory functions of PD-1 and its ligands and their therapeutic potential.
Collapse
Affiliation(s)
- Mary E Keir
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115-5727, USA
| | | | | | | |
Collapse
|
25
|
Zaccone P, Burton OT, Cooke A. Interplay of parasite-driven immune responses and autoimmunity. Trends Parasitol 2007; 24:35-42. [PMID: 18055264 DOI: 10.1016/j.pt.2007.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/29/2007] [Accepted: 10/01/2007] [Indexed: 12/24/2022]
Abstract
As more facts emerge regarding the ways in which parasite-derived molecules modulate the host immune response, it is possible to envisage how a lack of infection by agents that once infected humans commonly might contribute to the rise in autoimmune disease. Through effects on cells of both the innate and adaptive arms of the immune response, parasites can orchestrate a range of outcomes that are beneficial not only to parasites, in terms of facilitating their life cycles, but also to their host, in limiting pathology.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | |
Collapse
|
26
|
Dougan SK, Kaser A, Blumberg RS. CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 2007; 314:113-41. [PMID: 17593659 DOI: 10.1007/978-3-540-69511-0_5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD1 proteins present self and microbial glycolipids to CD 1-restricted T cells, or in the case of CD1d, to NKT cells. The CD1 family in humans consists of group I proteins CDla, CDlb, CDlc, and CDle and the group II protein CDld. Rodents express only CDld, but as CD1d is broadly expressed and traffics to all endosomal compartments, this single CD1 family member is thereby able to acquire antigens in many subcellular compartments. A complete understanding of the CD 1 family requires an appreciation of which cells express CD1 and how CD1 contributes to the unique function of each cell type. While group I CD 1 expression is limited to thymocytes and professional APCs, CD1d has a wider tissue distribution and can be found on many nonhematopoietic cells. The expression and regulation of CD1 are presented here with particular emphasis on the function of CD1 in thymocytes, B cells, monocytes and macrophages, dendritic cells (DCs), and intestinal epithelial cells (IECs). Altered expression of CD 1 in cancer, autoimmunity, and infectious disease is well documented, and the implication of CD 1 expression in these diseases is discussed.
Collapse
Affiliation(s)
- S K Dougan
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital,75 Francis St, Thorn 1415, Boston, MA 02115, USA
| | | | | |
Collapse
|