1
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Liao YC, Wu SY, Huang YF, Lo PC, Chan TY, Chen CA, Wu CH, Hsu CC, Yen CL, Chen PC, Shieh CC. NOX2-Deficient Neutrophils Facilitate Joint Inflammation Through Higher Pro-Inflammatory and Weakened Immune Checkpoint Activities. Front Immunol 2021; 12:743030. [PMID: 34557202 PMCID: PMC8452958 DOI: 10.3389/fimmu.2021.743030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Immune-mediated arthritis is an important chronic inflammatory disease of joints causing debilitating morbidity in affected patients. The mechanisms underlying immune-mediated arthritis have been intensively investigated, however the cellular and molecular factors contributing to the joint inflammation in different redox conditions have not been clearly elucidated. Previous research showed that phagocyte-produced reactive oxygen species (ROS) plays an anti-inflammatory role in K/BxN serum-transfer arthritis and NOX2-deficient mice tend to have more severe arthritis. Although many leukocytes play critical roles in the development of immune-mediated arthritis, the role of neutrophils, which are the main producers of ROS in inflammation, is still controversial. We hence assessed the immunomodulatory function of neutrophils from arthritic joints of NOX2-deficient and wild type mice in this study. We found more neutrophils accumulation in NOX2-deficient inflamed joints. RNA-sequencing and quantitative PCR revealed significantly increased expression of acute inflammation genes including IL1b, Cxcl2, Cxcl3, Cxcl10 and Mmp3 in activated neutrophils from the inflamed joints of NOX2-deficient mice. Moreover, gene set enrichment analysis (GSEA) showed enriched gene signatures in type I and II IFN responses, IL-6-JAK-STAT3 signaling pathway and TNF-α signaling pathway via NF-κB in NOX2-deficient neutrophils. In addition, we found that NOX2-deficient neutrophils expressed lower levels of PD-L1 and were less suppressive than WT neutrophils. Moreover, treatment of PD-L1-Fc decreased cytokine expression and ameliorated the severity of inflammatory arthritis. Our results suggest that NOX2-derived ROS is critical for regulating the function and gene expression in arthritic neutrophils. Both the strong pro-inflammatory and weakened anti-inflammatory functions of neutrophils due to abnormal redox regulation may be targets of treatment for immune-mediated arthritis.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Yu Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Pei-Chi Lo
- Laboratory of Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tzu-Yi Chan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-An Chen
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chun-Hsin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Chia Hsu
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Liang Yen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
3
|
Bergerhausen L, Grosche J, Meißner J, Hecker C, Caliandro MF, Westerhausen C, Kamenac A, Rezaei M, Mörgelin M, Poschmann G, Vestweber D, Hanschmann EM, Eble JA. Extracellular Redox Regulation of α7β Integrin-Mediated Cell Migration Is Signaled via a Dominant Thiol-Switch. Antioxidants (Basel) 2020; 9:antiox9030227. [PMID: 32164274 PMCID: PMC7139957 DOI: 10.3390/antiox9030227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7β1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7β1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.
Collapse
Affiliation(s)
- Lukas Bergerhausen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Michele F. Caliandro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christoph Westerhausen
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
- Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Andrej Kamenac
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | | | - Gereon Poschmann
- Institute of Molecular Medicine I, Functional Redox Proteomics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck-Institute of Molecular Biomedicine, 48149 Münster, Germany;
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
- Correspondence: ; Tel.: +49-251-835-5591
| |
Collapse
|
4
|
Lermant A, Murdoch CE. Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel) 2019; 8:E315. [PMID: 31426416 PMCID: PMC6720164 DOI: 10.3390/antiox8080315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
5
|
You Y, Chen J, Zhu F, Xu Q, Han L, Gao X, Zhang X, Luo HR, Miao J, Sun X, Ren H, Du Y, Guo L, Wang X, Wang Y, Chen S, Huang N, Li J. Glutaredoxin 1 up-regulates deglutathionylation of α4 integrin and thereby restricts neutrophil mobilization from bone marrow. J Biol Chem 2018; 294:2616-2627. [PMID: 30598505 DOI: 10.1074/jbc.ra118.006096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
α4 integrin plays a crucial role in retention and release of neutrophils from bone marrow. Although α4 integrin is known to be a potential target of reactive oxygen species (ROS)-induced cysteine glutathionylation, the physiological significance and underlying regulatory mechanism of this event remain elusive. Here, using in vitro and in vivo biochemical and cell biology approaches, we show that physiological ROS-induced glutathionylation of α4 integrin in neutrophils increases the binding of neutrophil-associated α4 integrin to vascular cell adhesion molecule 1 (VCAM-1) on human endothelial cells. This enhanced binding was reversed by extracellular glutaredoxin 1 (Grx1), a thiol disulfide oxidoreductase promoting protein deglutathionylation. Furthermore, in a murine inflammation model, Grx1 disruption dramatically elevated α4 glutathionylation and subsequently enhanced neutrophil egress from the bone marrow. Corroborating this observation, intravenous injection of recombinant Grx1 into mice inhibited α4 glutathionylation and thereby suppressed inflammation-induced neutrophil mobilization from the bone marrow. Taken together, our results establish ROS-elicited glutathionylation and its modulation by Grx1 as pivotal regulatory mechanisms controlling α4 integrin affinity and neutrophil mobilization from the bone marrow under physiological conditions.
Collapse
Affiliation(s)
| | - Junli Chen
- From the Departments of Pathophysiology and
| | - Feimei Zhu
- From the Departments of Pathophysiology and
| | - Qian Xu
- From the Departments of Pathophysiology and
| | - Lu Han
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiang Gao
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R Luo
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Lab Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| | | | - Xiaodong Sun
- Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyu Ren
- From the Departments of Pathophysiology and
| | - Yu Du
- From the Departments of Pathophysiology and
| | - Lijuan Guo
- From the Departments of Pathophysiology and
| | | | - Yi Wang
- From the Departments of Pathophysiology and
| | | | - Ning Huang
- From the Departments of Pathophysiology and
| | - Jingyu Li
- From the Departments of Pathophysiology and
| |
Collapse
|
6
|
Huang YF, Lo PC, Yen CL, Nigrovic PA, Chao WC, Wang WZ, Hsu GC, Tsai YS, Shieh CC. Redox Regulation of Pro-IL-1β Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice. Antioxid Redox Signal 2015; 23:973-84. [PMID: 25867281 PMCID: PMC4624247 DOI: 10.1089/ars.2014.6136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS To elucidate the role of reactive oxygen species (ROS) in arthritis and to identify targets of arthritis treatment in conditions with different levels of oxidant stress. RESULTS Through establishing an arthritis model by injecting arthritogenic serum into wild-type and NADPH oxidase 2 (NOX2)-deficient mice, we found that arthritis had a neutrophilic infiltrate and was more severe in Ncf1(-/-) mice, a mouse strain lacking the expression of the NCF1/p47(phox) component of NOX2. The levels of interleukin-1β (IL-1β) and IL-6 in inflamed joints were higher in Ncf1(-/-) than in controls. Antagonists of tumor necrosis factor-α (TNFα) and IL-1β were equally effective in suppressing arthritis in wild-type mice, while IL-1β blockade was more effective than TNFα blockade in Ncf1(-/-) mice. A treatment of caspase inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a cathepsin inhibitor alone, suppressed arthritic severity in the wild-type mice, while a treatment of cathepsin inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a caspase inhibitor alone, were effective in treating Ncf1(-/-) mice. Consistently, cathepsin B was found to proteolytically process pro-IL-1β to its active form and this activity was suppressed by ROS. INNOVATION This novel mechanism of a redox-mediated immune regulation of arthritis through leukocyte-produced ROS is important for devising an optimal treatment for patients with different levels of tissue ROS. CONCLUSION Our results suggest that ROS act as a negative feedback to constrain IL-1β-mediated inflammation, accounting for the more severe arthritis in the absence of NOX2.
Collapse
Affiliation(s)
- Ya-Fang Huang
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Pei-Chi Lo
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Chia-Liang Yen
- 2 Institute of Basic Medical Science, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Peter Andrija Nigrovic
- 3 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital , Boston, Massachusetts.,4 Division of Immunology, Boston Children's Hospital , Boston, Massachusetts
| | - Wen-Chen Chao
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan .,5 Department of Internal Medicine, Taichung Veteran General Hospital , Chiayi Branch, Chiayi, Taiwan
| | - Wei-Zhi Wang
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - George Chengkang Hsu
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Yau-Sheng Tsai
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan
| | - Chi-Chang Shieh
- 1 Institute of Clinical Medicine, National Cheng Kung University College of Medicine , Tainan, Taiwan .,6 Department of Pediatrics, National Cheng Kung University Hospital , Tainan, Taiwan
| |
Collapse
|
7
|
Chigaev A. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front Pharmacol 2015; 6:134. [PMID: 26191006 PMCID: PMC4489100 DOI: 10.3389/fphar.2015.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the "Warburg effect," the specific role of chloride ion transport, direct "import" of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
8
|
Layani-Bazar A, Skornick I, Berrebi A, Pauker MH, Noy E, Silberman A, Albeck M, Longo DL, Kalechman Y, Sredni B. Redox Modulation of Adjacent Thiols in VLA-4 by AS101 Converts Myeloid Leukemia Cells from a Drug-Resistant to Drug-Sensitive State. Cancer Res 2014; 74:3092-103. [DOI: 10.1158/0008-5472.can-13-2159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Suh JH, Kanathezhath B, Shenvi S, Guo H, Zhou A, Tiwana A, Kuypers F, Ames BN, Walters MC. Thiol/redox metabolomic profiling implicates GSH dysregulation in early experimental graft versus host disease (GVHD). PLoS One 2014; 9:e88868. [PMID: 24558439 PMCID: PMC3928313 DOI: 10.1371/journal.pone.0088868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical (Day+10) stages of GVHD by comparing effects in Syngeneic (Syn; major histocompatibility complex- identical) and allogeneic transplant recipients (Allo BMT) in experimental models. While most metabolic changes were similar in both groups, plasma glutathione (GSH) was significantly decreased, and GSH disulfide (GSSG) was increased after allogeneic compared to syngeneic recipient and non-transplant controls. The early oxidation of the plasma GSH/GSSG redox couple was also observed irrespective of radiation conditioning treatment and was accompanied by significant rise in hepatic protein oxidative damage and ROS generation. Despite a significant rise in oxidative stress, compensatory increase in hepatic GSH synthesis was absent following Allo BMT. Early shifts in hepatic oxidative stress and plasma GSH loss preceded a statistically significant rise in TNF-α. To identify metabolomic biomarkers of hepatic GVHD injury, plasma metabolite concentrations analyzed at Day+10 were correlated with hepatic organ injury. GSSG (oxidized GSH) and β-alanine, were positively correlated, and plasma GSH cysteinylglycine, and branched chain amino acids were inversely correlated with hepatic injury. Although changes in plasma concentrations of cysteine, cystathionine (GSH precursors) and cysteinylglycine (a GSH catabolite) were not significant by univariate analysis, principal component analysis (PCA) indicated that accumulation of these metabolites after Allo BMT contributed significantly to early GVHD in contrast to Syn BMT. In conclusion, thiol/redox metabolomic profiling implicates that early dysregulation of host hepatic GSH metabolism and oxidative stress in sub-clinical GVHD before elevated TNF-α levels is associated with GVHD pathogenesis. Future studies will probe the mechanisms for these changes and examine the potential of antioxidant intervention strategies to modulate GVHD.
Collapse
Affiliation(s)
- Jung H. Suh
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| | - Bindu Kanathezhath
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Swapna Shenvi
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Hua Guo
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Department of Pathology, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Alicia Zhou
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Anureet Tiwana
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Frans Kuypers
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bruce N. Ames
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Mark C. Walters
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| |
Collapse
|
10
|
Valcárcel M, Carrascal T, Crende O, Vidal-Vanaclocha F. IL-18 regulates melanoma VLA-4 integrin activation through a Hierarchized sequence of inflammatory factors. J Invest Dermatol 2013; 134:470-480. [PMID: 23938462 DOI: 10.1038/jid.2013.342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 06/04/2013] [Accepted: 07/07/2013] [Indexed: 12/16/2022]
Abstract
Very late antigen-4 (VLA-4) is frequently overexpressed on melanoma cells contributing to inflammation-dependent metastasis. Melanoma cell adhesion to endothelium via VLA-4-vascular cell adhesion molecule-1 (VCAM-1) interaction was used to study VLA-4 activation during melanoma cell response to inflammation. Cooperation among major inflammatory mediators was analyzed in melanoma cells exposed to single inflammatory factors in the presence of inhibitors for other assayed mediators. A stepwise cascade of hierarchized molecules heterogeneously made and used during melanoma response to IL-18, induced hydrogen peroxide (H2O2), in turn activating VLA-4 and melanoma cell adhesion to endothelium. The cascade involved prostaglandin E2 (PGE2) production from melanoma induced by IL-18-dependent tumor necrosis factor-α (TNFα); next, PGE2-induced IL-1β via vascular endothelial growth factor (VEGF) secretion, which in turn induced VLA-4 activation via cyclooxygenase 2-dependent H2O2. This sequence operated in IL-18R/VLA-4/VEGF-expressing murine (B16) and human (A375 and 883) melanomas, but not in those without this phenotype. Separation of active VLA-4-expressing B16 melanoma cells through immobilized VCAM-1 verified their higher IL-18R/TNFR1/VEGFR2 expression and metastatic growth than inactive VLA-4-expressing cells. However, cooperation among melanoma cell sub-populations with heterogeneous cytokine receptor levels may occur through VLA-4-stimulating factors, leading to intratumoral amplification of metastatic potential. Therefore, expression of the VLA-4-stimulating factor sequence may help to predict melanoma prometastatic risk, and offers therapeutic targets for metastatic melanoma deactivation through VLA-4 activation blockade.
Collapse
Affiliation(s)
| | - Teresa Carrascal
- Department of Cellular Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia, Spain
| | - Olatz Crende
- Department of Cellular Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia, Spain
| | - Fernando Vidal-Vanaclocha
- CEU-San Pablo University and HM-Hospitals School of Medicine, Institute of Applied Molecular Medicine (IMMA), Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
11
|
Yuan Y, Lee SH, Wu S. The role of ROS in ionizing radiation-induced VLA-4 mediated adhesion of RAW264.7 cells to VCAM-1 under flow conditions. Radiat Res 2012. [PMID: 23181590 DOI: 10.1667/rr3119.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alteration of adhesion molecule expression on endothelial cells has a direct connection with ionizing radiation-induced atherosclerosis, which is an adverse effect observed after radiotherapy. However, minimal attention has been given to monocytes/macrophages role in atherosclerosis development, which are exposed to the radiation at the same time. Under flow conditions using a parallel plate flow chamber to mimic physiological shear stress, we demonstrate here that the avidity between very late antigen-4 (VLA-4) of RAW264.7 cells and its ligand vascular cell adhesion molecule-1 (VCAM-1), was increased after low dose (0.5 Gy) irradiation, but was reduced after higher dose (5 Gy) treatment of ionizing radiation despite the fact that the surface expression of VLA-4 was up-regulated at 5 Gy of ionizing radiation. Treating the cells with free radical scavenger N-acetylcysteine had no effect on VLA-4 expression, but did reduce the avidity between RAW264.7 cells and VCAM-1 to a similar level, independent of ionizing radiation dose. The effect of H(2)O(2) treatment (from 1-100 μM) on RAW264.7 cell adhesion to VCAM-1 generated a similar bell-shaped graph as ionizing radiation. These results suggest that ionizing radiation regulates adhesive interactions between VLA-4 and VCAM-1, and that reactive oxygen species might function as a regulator, for this increased adhesiveness but with altered expression of integrin not play a major role.
Collapse
Affiliation(s)
- Ye Yuan
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | | | | |
Collapse
|
12
|
Kavanagh DPJ, Yemm AI, Alexander JS, Frampton J, Kalia N. Enhancing the adhesion of hematopoietic precursor cell integrins with hydrogen peroxide increases recruitment within murine gut. Cell Transplant 2012; 22:1485-99. [PMID: 22889470 DOI: 10.3727/096368912x653192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) migrate to injury sites and aid in tissue repair. However, clinical success is poor and is partially due to limited HSC recruitment. We hypothesized that HSC pretreatment with H2O2 would enhance their recruitment to injured gut. As HSCs are rare cells, the number of primary cells obtained from donors is often inadequate for functional experiments. To circumvent this, in this study we utilized a functionally relevant cell line, HPC-7. Anesthetized mice were subjected to intestinal ischemia-reperfusion (IR) injury, and HPC-7 recruitment was examined intravitally. Adhesion to endothelial cells (ECs), injured gut sections, and ICAM-1/VCAM-1 protein were also quantitated in vitro. H2O2 pretreatment significantly enhanced HPC-7 recruitment to injured gut in vivo. A concomitant reduction in pulmonary adhesion was also observed. Enhanced adhesion was also observed in all in vitro models. Increased clustering of α4 and β2 integrins, F-actin polymerization, and filopodia formation were observed in pretreated HPC-7s. Importantly, H2O2 did not reduce HPC-7 viability or proliferative ability. HPC-7 recruitment to injured gut can be modulated by H2O2 pretreatment. This may be through increasing the affinity or avidity of surface integrins that mediate HPC-7 homing to injured sites or through stimulating the migratory apparatus. Strategies that enhance hematopoietic stem/progenitor cell recruitment may ultimately affect their therapeutic efficacy.
Collapse
Affiliation(s)
- Dean P J Kavanagh
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
13
|
Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans 2011; 39:1268-72. [DOI: 10.1042/bst0391268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation or inflammatory cytokines and oxidative stress have often been associated, and thiol antioxidants, particularly glutathione, have often been seen as possible anti-inflammatory mediators. However, whereas several cytokine inhibitors have been approved for drug use in chronic inflammatory diseases, this has not happened with antioxidant molecules. We outline the complexity of the role of protein thiol–disulfide oxidoreduction in the regulation of immunity and inflammation, the underlying molecular mechanisms (such as protein glutathionylation) and the key enzyme players such as Trx (thioredoxin) or Grx (glutaredoxin).
Collapse
|
14
|
Rasmussen HH, Hamilton EJ, Liu CC, Figtree GA. Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc Med 2011; 20:85-90. [PMID: 21130951 DOI: 10.1016/j.tcm.2010.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reminiscent of phosphorylation, cellular signaling can induce reversible forms of oxidative modification of proteins with an impact on their function. Redox signaling can be coupled to cell membrane receptors for hormones and be a physiologic means of regulating protein function, whereas pathologic increases in oxidative stress may induce disease processes. Here we review the role of reversible oxidative modification of proteins in the regulation of their function with particular emphasis on the cardiac Na(+)-K(+) pump. We describe how protein-kinase-dependent activation of redox signaling, mediated by angiotensin receptors and β adrenergic receptors, induces glutathionylation of an identified cysteine residue in the β(1) subunit of the α/β pump heterodimer; and we discuss how this may link neurohormonal abnormalities, increased oxidative stress, and cardiac myocyte Na(+) dysregulation and heart failure with important implications for treatment.
Collapse
Affiliation(s)
- Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
15
|
Liu SY, Wang WZ, Yen CL, Tsai MY, Yang PW, Wang JY, Ho CY, Shieh CC. Leukocyte nicotinamide adenine dinucleotide phosphate-reduced oxidase is required for isocyanate-induced lung inflammation. J Allergy Clin Immunol 2011; 127:1014-23. [PMID: 21272929 DOI: 10.1016/j.jaci.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND Isocyanates are low-molecular-weight compounds noted for inducing occupational and environmental asthma. Isocyanate-induced lung disease, an oxidant stress-dependent pulmonary inflammation, is the leading cause of occupational asthma. OBJECTIVES To address the role of leukocyte-produced oxidants in airway inflammation induced by toluene diisocyanate (TDI), and to elucidate the role of leukocyte nicotinamide adenine dinucleotide phosphate-reduced (NADPH) oxidase in pathogenesis by TDI. METHODS Wild-type mice and NADPH oxidase-deficient mice (neutrophil cytosolic factor 1 mutant, Ncf1(-/-)) were intranasally injected, challenged with inhalatory TDI, and then investigated for lung inflammation. RESULTS Cell infiltration in lung tissue and leukocytes in bronchoalveolar lavage, airway reactivity to a methacholine challenge, and TDI-induced inflammatory cytokine expression and nuclear factor activation in the lung tissue were all markedly lower in Ncf1(-/-) mice. Wild-type mice treated with blocking antibodies against CD4 and IL-17 showed markedly lower TDI-induced airway hyperresponsiveness. CONCLUSION Leukocyte NADPH oxidase is an essential regulator in TDI-induced airway inflammation through redox modification of immune responses.
Collapse
Affiliation(s)
- Si-Yen Liu
- Institute of Basic Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A. The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 2008; 38:2419-25. [PMID: 18792398 DOI: 10.1002/eji.200838439] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resting T lymphocytes can internalize reduced cysteine (Cys) but not cystine, the oxidized form of the amino acid that predominates extracellularly. In vitro studies have shown that DC provide Cys to T cells during antigen presentation, allowing their activation. Here, we show that increased thiol production is a hallmark of immune response in vivo. Indeed, the thiol content of LN increases dramatically after antigen injection. Non-protein thiols co-distribute with DC and are highly abundant in germinal centers. In agreement, activated but not resting B lymphocytes and macrophages release free thiols. Increased thiol release following activation requires thioredoxin and is paralleled by increased thioredoxin expression. The T zones of LN are consistently less stained, and both resting and activated T cells are unable to release thiols. Interestingly, the cystine/glutamate transporter x(c) (-) is absent in resting T lymphocytes but is rapidly induced by TCR triggering in vitro, indicating that the release of T cells from the need of exogenous Cys occurs early after activation. These results indicate that a reducing microenvironment is essential to start the immune response but dispensable for its evolution, and support the emerging concept that extracellular redox is implicated in the control of crucial cellular functions.
Collapse
|