1
|
Stohl W, Wu Y, Stohl M. T cell Dissimilarities in B Cell Activating Factor-Deficient Versus B Cell Activating Factor Receptor 3-Deficient Systemic Lupus Erythematosus-Prone NZM 2328 Mice as Contributors to Their Divergent Clinical Outcomes. ACR Open Rheumatol 2024; 6:756-768. [PMID: 39143363 PMCID: PMC11557988 DOI: 10.1002/acr2.11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE We assessed the contributions of B cell and T cell subsets to the disparate clinical outcomes in NZM.Baff-/- and NZM.Br3-/- mice. METHODS We assessed in NZM wild-type, NZM.Baff-/-, and NZM.Br3-/- mice numbers and percentages of B cells and subsets, T cells and subsets, and in vivo proliferation and survival of forkhead box P3 (Foxp3)+ cells by fluorescence-activated cell sorting. Relationships between percentages of Foxp3+ cells and numbers of CD19+ and CD4+ cells were assessed by linear regressions. RESULTS In each age and sex cohort, percentages and numbers of CD19+ cells were similar in NZM.Baff-/- and NZM.Br3-/- mice. Percentages of CD3+ and CD4+ cells were greater in NZM.Br3-/- than in NZM.Baff-/- mice, with the CD4 to CD3 cell ratios being greater in NZM.Br3-/- than in NZM.Baff-/- mice and percentages of Foxp3+ cells in NZM.Br3-/- mice being lower than in NZM.Baff-/- mice. Percentages of Foxp3+ cells correlated positively with CD19+ cells in NZM.Baff-/- mice but negatively in NZM.Br3-/- mice. In vivo proliferation and survival of Foxp3+ cells were lower in NZM.Baff-/- mice than in NZM.Br3-/- mice. CONCLUSION Differences between NZM.Baff-/- and NZM.Br3-/- mice in Foxp3+ cells and their relationships with CD19+ cells may have more to do with their divergent clinical outcomes than do differences in numbers of B cells. These unexpected findings suggest that B cell activating factor (BAFF)-B cell maturation antigen (BCMA) or BAFF-Transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) interactions may help drive development of clinical systemic lupus erythematosus (SLE) even under conditions of considerable B cell depletion. Insufficient blocking of BAFF-BCMA and BAFF-TACI interactions may lie at the heart of incomplete clinical response to BAFF-targeting agents in human SLE.
Collapse
Affiliation(s)
- William Stohl
- University of Southern California Keck School of MedicineLos Angeles
| | - Ying Wu
- University of Southern California Keck School of MedicineLos Angeles
| | - Malka Stohl
- New York State Psychiatric InstituteNew York City
| |
Collapse
|
2
|
Daikidou DV, Lioulios G, Sampani E, Xochelli A, Nikolaidou V, Moysidou E, Christodoulou M, Iosifidou A, Iosifidou M, Briza DI, Papagianni A, Fylaktou A, Stangou M. Prospective Analysis of B Lymphocyte Subtypes, before and after Initiation of Dialysis, in Patients with End-Stage Renal Disease. Life (Basel) 2023; 13:life13040860. [PMID: 37109388 PMCID: PMC10146774 DOI: 10.3390/life13040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
End-stage renal disease (ESRD) is followed by alterations in adaptive immunity. The aim of this study was to evaluate B lymphocyte subtypes in ESRD patients before and after hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD). PATIENTS AND METHODS CD5, CD27, BAFF, IgM and annexin were evaluated by flow cytometry on CD19+ cells in ESRD patients (n = 40), at time of initiating HD or CAPD (T0) and 6 months later (T6). RESULTS A significant reduction in ESRD-T0 compared to controls was noticed for CD19+, 70.8 (46.5) vs. 171 (249), p < 0.0001, CD19+CD5-, 68.6 (43) vs. 168.9 (106), p < 0.0001, CD19+CD27-, 31.2 (22.1) vs. 59.7 (88.4), p < 0.0001, CD19+CD27+, 42.1 (63.6) vs. 84.3 (78.1), p = 0.002, CD19+BAFF+, 59.7 (37.8) vs. 127.9 (123.7), p < 0.0001 and CD19+IgM+ cells, 48.9 (42.8) vs. 112.5 (81.7) (K/μL), p < 0.0001. The ratio of early/late apoptotic B lymphocytes was reduced (16.8 (10.9) vs. 110 (25.4), p = 0.03). CD19+CD5+ cells were the only cell type with an increased proportion in ESRD-T0 patients (2.7 (3.7) vs. 0.6 (1.1), p < 0.0001). After 6 months on CAPD or HD, CD19+CD27-(%) and early apoptotic lymphocytes were reduced further. The HD patients also showed a significant increase in late apoptotic lymphocytes, from 1.2 (5.7) to 4.2 (7.2) K/mL, p = 0.02. CONCLUSIONS B cells and most of their subtypes were significantly reduced in ESRD-T0 patients compared to controls, the only exception being CD19+CD5+ cells. Apoptotic changes were prominent in ESRD-T0 patients and were exacerbated by HD.
Collapse
Affiliation(s)
- Dimitra-Vasilia Daikidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Erasmia Sampani
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Artemis Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Myrto Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Dimitria Ioanna Briza
- School of Informatics, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Aikaterini Papagianni
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Ge F, Wang F, Yan X, Li Z, Wang X. Association of BAFF with PI3K/Akt/mTOR signaling in lupus nephritis. Mol Med Rep 2017; 16:5793-5798. [PMID: 28849060 PMCID: PMC5865758 DOI: 10.3892/mmr.2017.7367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus is a connective tissue disease characterized by autoimmune inflammation, which leads to specific and nonspecific immune disorders with the formation of various autoantibodies by activated B cells. B-cell-activating factor (BAFF) is secreted by macrophages and activated T cells, and is responsible for the proliferation, maturation and differentiation of B cells. However, the mechanism of BAFF involvement in lupus nephritis (LN) remains unclear. The aim of the present study was to investigate the association between BAFF and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling in order to elucidate the pathogenesis of LN. In the present study, 18 patients with LN and 20 controls were included. The clinical data were analyzed and plasma levels of BAFF were measured using an ELISA. The mRNA and protein levels of BAFF, phosphorylated (p)-PI3K, p-Akt and p-mTOR in kidney tissues were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Plasma BAFF levels were significantly increased in patients with LN compared with the controls (P<0.001). mRNA and protein levels of BAFF, p-PI3K, p-Akt and p-mTOR in kidney tissue were significantly increased in patients with LN compared with the controls (all P<0.001). mRNA and protein levels of BAFF in the kidney tissues of patients with LN were positively correlated with the levels of p-PI3K, p-Akt and p-mTOR. The results of the present study revealed a correlation between BAFF and the PI3K/Akt/mTOR signaling pathway, and it is hypothesized that they are involved in the pathogenesis of LN.
Collapse
Affiliation(s)
- Fengmei Ge
- Department of Rheumatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Fangfang Wang
- Department of Rheumatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiuqing Yan
- Department of Rheumatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Zhao Li
- Department of Rheumatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xuebin Wang
- Department of Rheumatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
4
|
Allman WR, Liu L, Coleman AS, Akkoyunlu M. MRL Strains Have a BAFFR Mutation without Functional Consequence. PLoS One 2016; 11:e0154518. [PMID: 27149280 PMCID: PMC4858247 DOI: 10.1371/journal.pone.0154518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
It has been shown that B cell activating factor receptor (BAFFR) is critical for B cell development and survival. In this study, we sought to evaluate the expression and function of BAFFR across multiple stains of mice that vary in their potential to develop systemic autoimmune disease. The inability of a commercial antibody to bind to BAFFR in the autoimmune prone mouse strains, MRL and MRL/Lpr led to the discovery of a mutation in TNFRSF13C gene (encoding BAFFR) that resulted in a Pro44Ser substitution in the N-terminus near the BAFF binding site in these strains. To define the biological consequences of mutant BAFFR, we compared the expression and activity of BAFFR in MRL and MRL/Lpr mice to BALB/c, which express the consensus version of TNFRSF13C. B cells from MRL and MRL/Lpr mice expressed mutant BAFFR on surface and were capable of responding to BAFF as exhibited by BAFF-mediated reduction in apoptosis and NF-κB2 activation. Signaling through MAPK ERK1/2 was not significantly induced by BAFF in MRL/Lpr mice; however, MAPK ERK1/2 signaling was intact in MRL mice. The inability of MRL/Lpr B cells to significantly activate ERK1/2 in response to BAFF was due to the high basal activity of the signaling pathway in these cells. In fact, basal activity of ERK1/2 in B cells correlated with the degree of autoimmune susceptibility exhibited by each strain. In addition, aged MRL/Lpr mice with severe autoimmune disease had high BAFF levels, low surface BAFFR, and high basal NF-κB2 activation, a pattern which is attributed to the high frequency of antibody secreting cells. We conclude that P44S BAFFR mutation does not hinder BAFFR function or enhance B cell activity in MRL/Lpr and MRL mice and that other susceptibility loci on the MRL background contributed to the hyperactivity of these cells.
Collapse
Affiliation(s)
- Windy R. Allman
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Lunhua Liu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Adam S. Coleman
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993–0002, United States of America
- * E-mail:
| |
Collapse
|
5
|
Thümmler S, Giuliano F, Karmous-Benailly H, Richelme C, Fernandez A, De Georges C, Askenazy F. Neurodevelopmental and immunological features in a child presenting 22q13.2 microdeletion. Am J Med Genet A 2015; 170:792-4. [PMID: 26566763 DOI: 10.1002/ajmg.a.37470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Susanne Thümmler
- University Department of Child and Adolescent Psychiatry, Nice Children's Hospitals CHU-Lenval, Nice, France
| | - Fabienne Giuliano
- Department of Human Genetics, University Hospital of Nice, Nice, France
| | | | - Christian Richelme
- Department of Pediatrics, Nice Children's Hospitals CHU-Lenval, Nice, France
| | - Arnaud Fernandez
- University Department of Child and Adolescent Psychiatry, Nice Children's Hospitals CHU-Lenval, Nice, France
| | - Christine De Georges
- University Department of Child and Adolescent Psychiatry, Nice Children's Hospitals CHU-Lenval, Nice, France
| | - Florence Askenazy
- University Department of Child and Adolescent Psychiatry, Nice Children's Hospitals CHU-Lenval, Nice, France
| |
Collapse
|
6
|
Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 2015; 125:3720-30. [PMID: 25931583 DOI: 10.1182/blood-2014-10-603951] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of powerful posttranscriptional regulators implicated in the control of diverse biological processes, including regulation of hematopoiesis and the immune response. To define the biological functions of miR-142, which is preferentially and abundantly expressed in immune cells, we created a mouse line with a targeted deletion of this gene. Our analysis of miR-142(-/-) mice revealed a critical role for this miRNA in the development and homeostasis of lymphocytes. Marginal zone B cells expand in the knockout spleen, whereas the number of T and B1 B cells in the periphery is reduced. Abnormal development of hematopoietic lineages in miR-142(-/-) animals is accompanied by a profound immunodeficiency, manifested by hypoimmunoglobulinemia and failure to mount a productive immune response to soluble antigens and virus. miR-142(-/-) B cells express elevated levels of B-cell-activating factor (BAFF) receptor (BAFF-R) and as a result proliferate more robustly in response to BAFF stimulation. Lowering the BAFF-R gene dose in miR-142(-/-) mice rescues the B-cell expansion defect, suggesting that BAFF-R is a bona fide miR-142 target through which it controls B-cell homeostasis. Collectively, our results uncover miR-142 as an essential regulator of lymphopoiesis, and suggest that lesions in this miRNA gene may lead to primary immunodeficiency.
Collapse
|
7
|
Berry GJ, Budgeon LR, Cooper TK, Christensen ND, Waldner H. The type 1 diabetes resistance locus B10 Idd9.3 mediates impaired B-cell lymphopoiesis and implicates microRNA-34a in diabetes protection. Eur J Immunol 2014; 44:1716-27. [PMID: 24752729 DOI: 10.1002/eji.201344116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/27/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
NOD.B10 Idd9.3 mice are congenic for the insulin-dependent diabetes (Idd) Idd9.3 locus, which confers significant type 1 diabetes (T1D) protection and encodes 19 genes, including microRNA (miR)-34a, from T1D-resistant C57BL/10 mice. B cells have been shown to play a critical role in the priming of autoantigen-specific CD4(+) T cells in T1D pathogenesis in non-obese diabetic (NOD) mice. We show that early B-cell development is impaired in NOD.B10 Idd9.3 mice, resulting in the profound reduction of transitional and mature splenic B cells as compared with NOD mice. Molecular analysis revealed that miR-34a expression was significantly higher in B-cell progenitors and marginal zone B cells from NOD.B10 Idd9.3 mice than in NOD mice. Furthermore, miR-34a expression in these cell populations inversely correlated with levels of Foxp1, an essential regulator of B-cell lymphopoiesis, which is directly repressed by miR-34a. In addition, we show that islet-specific CD4(+) T cells proliferated inefficiently when primed by NOD.B10 Idd9.3 B cells in vitro or in response to endogenous autoantigen in NOD.B10 Idd9.3 mice. Thus, Idd9.3-encoded miR-34a is a likely candidate in negatively regulating B-cell lymphopoiesis, which may contribute to inefficient expansion of islet-specific CD4(+) T cells and to T1D protection in NOD.B10 Idd9.3 mice.
Collapse
Affiliation(s)
- Gregory J Berry
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
8
|
Liu D, Li P, Song S, Liu Y, Wang Q, Chang Y, Wu Y, Chen J, Zhao W, Zhang L, Wei W. Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis. Eur J Pharmacol 2012; 690:214-25. [PMID: 22760071 DOI: 10.1016/j.ejphar.2012.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/25/2022]
Abstract
To investigate the role of PI3K/Akt/mTOR signaling mediated by B cell-activating factor belonging to the TNF family (BAFF) involved in anti-apoptosis of B lymphocytes in rats with collagen-induced arthritis (CIA) and the regulation of epigallo-catechin-3-gallate (EGCG). Sprague-Dawley rats were immunized to induce CIA. CIA rats were randomly separated into different groups and treated with EGCG (40, 80 mg/kg), Paeoniflorin (100mg/kg) from day 18 to day 38 after immunization. The effects of EGCG on B lymphocytes were evaluated by the levels of BAFF, anti-CII antibody, IgA, IgG and IgM, and the expressions of BAFF receptor, P110δ, p-Akt, mTORC1, Bcl-xL and Bim. B lymphocyte proliferations were analyzed by MTT assay. Apoptosis of B lymphocyte were assayed by flow cytometry. Results showed that, in CIA rats, the levels of BAFF, anti-CII antibody, IgA, IgG and IgM enhanced. BAFF receptor, P110δ, p-AKT, mTORC1 and Bcl-xL were expressed highly, while Bim expression decreased. EGCG (40, 80 mg/kg) and Paeoniflorin decreased the levels of BAFF, anti-CII antibody, IgA, IgG, IgM and the expressions of BAFF receptor, P110δ, p-AKT, mTORC1, Bcl-xL in CIA rats, and increased Bim expression. Further studies showed that EGCG could reduce the expression of P110δ and mTORC1 in vitro. EGCG inhibited B lymphocyte proliferation and induced B lymphocyte apoptosis. In conclusion, BAFF/BAFF receptor might regulate B cell anti-apoptosis through PI3K/Akt/mTOR pathway. EGCG had therapeutic effects on CIA rats, which might be relative to the inhibition effects of EGCG on BAFF and PI3K/Akt/mTOR signaling, and then the apoptosis of B lymphocytes was promoted further.
Collapse
Affiliation(s)
- Dandan Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry of China, 230032 Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li PP, Liu DD, Liu YJ, Song SS, Wang QT, Chang Y, Wu YJ, Chen JY, Zhao WD, Zhang LL, Wei W. BAFF/BAFF-R involved in antibodies production of rats with collagen-induced arthritis via PI3K-Akt-mTOR signaling and the regulation of paeoniflorin. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:290-300. [PMID: 22391142 DOI: 10.1016/j.jep.2012.02.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (Pae) is extracted from the root of paeonia lactiflora which have attracted attention for anti-rheumatic and immune modulating properties. AIM OF THE STUDY To investigate the role of PI3K/Akt/mTOR signaling mediated by BAFF/BAFF-R in antibodies production and the regulation of Pae on the signaling pathway in rats with collagen-induced arthritis (CIA). MATERIALS AND METHODS CIA rats were randomly separated into different groups and treated with Pae (25, 100mg/kg) from day 18 to day 38 after immunization. The effects of Pae on B lymphocytes of CIA rats were evaluated by the levels of BAFF, anti-CII antibody, IgA, IgG and IgM, and the expressions of BAFF-R, PI3K, p-Akt and mTOR. RESULTS In CIA rats, the levels of anti-CII antibody, IgA, IgG and IgM in serum enhanced, BAFF, BAFF-R, PI3K, p-Akt and mTOR were highly expressed. Pae (100mg/kg) obviously decreased arthritis score, relieved ankle and paw swelling, improved spleen histopathology in CIA rats, decreased the levels of IgA, IgM, IgG and anti-CII antibody, and significantly decreased the expressions of BAFF, BAFF-R, PI3K, p-Akt and mTOR. CONCLUSION PI3K/Akt/mTOR signaling mediated by BAFF/BAFF-R participates in antibodies production by B lymphocytes of CIA rats. Pae had therapeutic effects on rats with CIA. These effects might be relative to regulating PI3K/Akt/mTOR signal mediated by BAFF/BAFF-R, and down regulate the antibodies production further.
Collapse
Affiliation(s)
- Pei-Pei Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry of China, 230032 Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012; 119:651-65. [PMID: 22053109 PMCID: PMC3265196 DOI: 10.1182/blood-2011-04-325225] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022] Open
Abstract
Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, 77054, USA.
| | | | | |
Collapse
|
11
|
Mori S, Kubo S, Akiyoshi T, Yamada S, Miyazaki T, Hotta H, Desaki J, Kishi M, Konishi T, Nishino Y, Miyazawa A, Maruyama N, Shigemoto K. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:798-810. [PMID: 22142810 DOI: 10.1016/j.ajpath.2011.10.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/04/2011] [Accepted: 10/25/2011] [Indexed: 01/17/2023]
Abstract
Antibodies against acetylcholine receptors (AChRs) cause pathogenicity in myasthenia gravis (MG) patients through complement pathway-mediated destruction of postsynaptic membranes at neuromuscular junctions (NMJs). However, antibodies against muscle-specific kinase (MuSK), which constitute a major subclass of antibodies found in MG patients, do not activate the complement pathway. To investigate the pathophysiology of MuSK-MG and establish an experimental autoimmune MG (EAMG) model, we injected MuSK protein into mice deficient in complement component five (C5). MuSK-injected mice simultaneously developed severe muscle weakness, accompanied by an electromyographic pattern such as is typically observed in MG patients. In addition, we observed morphological and functional defects in the NMJs of EAMG mice, demonstrating that complement activation is not necessary for the onset of MuSK-MG. Furthermore, MuSK-injected mice exhibited acetylcholinesterase (AChE) inhibitor-evoked cholinergic hypersensitivity, as is observed in MuSK-MG patients, and a decrease in both AChE and the AChE-anchoring protein collagen Q at postsynaptic membranes. These findings suggest that MuSK is indispensable for the maintenance of NMJ structure and function, and that disruption of MuSK activity by autoantibodies causes MG. This mouse model of EAMG could be used to develop appropriate medications for the treatment of MuSK-MG in humans.
Collapse
Affiliation(s)
- Shuuichi Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Woo YJ, Yoon BY, Jhun JY, Oh HJ, Min SW, Cho ML, Park SH, Kim HY, Min JK. Regulation of B cell activating factor (BAFF) receptor expression by NF-ΚB signaling in rheumatoid arthritis B cells. Exp Mol Med 2011; 43:350-7. [PMID: 21515993 DOI: 10.3858/emm.2011.43.6.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
B cells play an important role in the pathogenesis of rheumatoid arthritis (RA). High levels of B cell activating factor (BAFF) are detected in autoimmune diseases. BAFF and BAFF receptor (BAFF-R) are expressed in B and T cells of RA synovium. The study was undertaken to identify the NF-ΚB signal pathway involved in the induction of BAFF-R in human B cells. Immunohistochemical staining of NF-ΚB p65, NF-ΚB p50, BAFF, and BAFF-R was performed on sections of synovium from severe and mild RA and osteoarthritis (OA) patients. Peripheral blood mononuclear cells (PBMCs) were isolated from control and RA patients and B cells were isolated from controls. BAFF-R was analyzed by flow cytometry, realtime PCR and confocal staining after treatment with NF-ΚB inhibitors. NF-ΚB p65, NF-ΚB p50, BAFF, and BAFF-R were highly expressed in severe RA synovium relative to mild RA synovium or OA synovium. BAFF-R expression was reduced by NF-ΚB inhibitors in PBMCs and B cells from normal controls. We also showed reduction in expression of BAFF-R via inhibition of the NF-ΚB pathway in PBMCs of RA patients. BAFF/BAFF-R signaling is an important mechanism of pathogenesis in RA and that BAFF-R reduction by NF-ΚB blocking therapy is another choice for controlling B cells in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Yun Ju Woo
- The Rheumatism Research Center Catholic Research Institute of Medical Science The Catholic University of Korea Seoul 137-040, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mayne CG, Spanier JA, Relland LM, Williams CB, Hayes CE. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol 2011; 41:822-32. [PMID: 21287548 DOI: 10.1002/eji.201040632] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 11/11/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an incurable autoimmune neurodegenerative disease. Environmental factors may be key to MS prevention and treatment. MS prevalence and severity decrease with increasing sunlight exposure and vitamin D(3) supplies, supporting our hypothesis that the sunlight-dependent hormone, 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2) D(3) ), inhibits autoimmune T-cell responses in MS. Moreover, 1,25-(OH)(2) D(3) inhibits and reverses experimental autoimmune encephalomyelitis (EAE), an MS model. Here, we investigated whether 1,25-(OH)(2) D(3) inhibits EAE via the vitamin D receptor (VDR) in T lymphocytes. Using bone marrow chimeric mice with a disrupted VDR only in radio-sensitive hematopoietic cells or radio-resistant non-hematopoietic cells, we found that hematopoietic cell VDR function was necessary for 1,25-(OH)(2) D(3) to inhibit EAE. Furthermore, conditional targeting experiments showed that VDR function in T cells was necessary. Neither 1,25-(OH)(2) D(3) nor T-cell-specific VDR targeting influenced CD4(+) Foxp3(+) T-cell proportions in the periphery or the CNS in these studies. These data support a model wherein 1,25-(OH)(2) D(3) acts directly on pathogenic CD4(+) T cells to inhibit EAE.
Collapse
Affiliation(s)
- Christopher G Mayne
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53706, USA
| | | | | | | | | |
Collapse
|
14
|
Walter JE, Rucci F, Patrizi L, Recher M, Regenass S, Paganini T, Keszei M, Pessach I, Lang PA, Poliani PL, Giliani S, Al-Herz W, Cowan MJ, Puck JM, Bleesing J, Niehues T, Schuetz C, Malech H, DeRavin SS, Facchetti F, Gennery AR, Andersson E, Kamani NR, Sekiguchi J, Alenezi HM, Chinen J, Dbaibo G, ElGhazali G, Fontana A, Pasic S, Detre C, Terhorst C, Alt FW, Notarangelo LD. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. ACTA ACUST UNITED AC 2010; 207:1541-54. [PMID: 20547827 PMCID: PMC2901061 DOI: 10.1084/jem.20091927] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Immunology and The Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Giltiay NV, Lu Y, Allman D, Jørgensen TN, Li X. The adaptor molecule Act1 regulates BAFF responsiveness and self-reactive B cell selection during transitional B cell maturation. THE JOURNAL OF IMMUNOLOGY 2010; 185:99-109. [PMID: 20543113 DOI: 10.4049/jimmunol.0903312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transitional stage is a key check-point for elimination of autoreactive B cells in the periphery. This selection process requires fine regulation of signals received through BCR and B cell activating factor (BAFF) receptor. We previously identified the adaptor molecule Act1 as a negative regulator of BAFF-mediated signaling. Deficiency of Act1 in mice results in peripheral B cell hyperplasia and development of autoimmunity. In this study, we demonstrate that Act1 plays a critical role in the regulation of transitional B cell survival and maturation. We found that the ratio of late-transitional (T2) to early-transitional (T1) cells was increased in spleens from Act1-deficient mice. Moreover, BAFF stimulation induced better T1 cell survival and promoted more efficient maturation of T1 cells into T2 cells ex vivo in the absence of Act1. BAFF stimulation induced higher levels of the anti-apoptotic Bcl-2 member Mc1-l in Act1-deficient T1 cells than in wild-type control cells, suggesting that Mcl-1 might be one of the key effector molecules for BAFF-mediated survival of the Act1-deficient transitional B cells. Importantly, costimulation with BAFF was able to rescue Act1-deficient T1 cells from BCR-induced apoptosis more effectively than Act1-sufficient T1 B cells. Finally, by using hen egg lysozyme double transgenic mice, we demonstrated that Act1 deficiency can promote the maturation of Ag-specific autoreactive B cells. Taken together, our results suggest that the transitional stage is a critical point of action of Act1 in the elimination of autoreactive B cells and in the regulation of peripheral B cell homeostasis.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
16
|
Hoek KL, Carlesso G, Clark ES, Khan WN. Absence of mature peripheral B cell populations in mice with concomitant defects in B cell receptor and BAFF-R signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:5630-43. [PMID: 19843948 DOI: 10.4049/jimmunol.0901100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generation of mature B lymphocytes from early (T1) and late transitional (T2) precursors requires cooperative signaling through BCR and B cell-activating factor receptor 3 (BR3). Recent studies have shown that BCR signaling positively regulates NF-kappaB2, suggesting BCR regulation of BR3 signaling. To investigate the significance of signal integration from BCR and BR3 in B cell development and function, we crossed Btk-deficient mice (btk(-/-)), which are developmentally blocked between the T2 and the mature follicular B cell stage as a result of a partial defect in BCR signaling, and A/WySnJ mice, which possess a mutant BR3 defective in propagating intracellular signals that results in a severely reduced peripheral B cell compartment, although all B cell subsets are present in relatively normal ratios. A/WySnJ x btk(-/-) mice display a B cell-autonomous defect, resulting in a developmental block at an earlier stage (T1) than either mutation alone, leading to the loss of mature splenic follicular and marginal zone B cells, as well as the loss of peritoneal B1 and B2 cell populations. The competence of the double mutant T1 B cells to respond to TLR4 and CD40 survival and activation signals is further attenuated compared with single mutations as evidenced by severely reduced humoral immune responses in vivo and proliferation in response to anti-IgM, LPS, and anti-CD40 stimulation in vitro. Thus, BCR and BR3 independently and in concert regulate the survival, differentiation, and function of all B cell populations at and beyond T1, earliest transitional stage.
Collapse
Affiliation(s)
- Kristen L Hoek
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
17
|
Mayne CG, Amanna IJ, Hayes CE. Murine BAFF-receptor residues 168-175 are essential for optimal CD21/35 expression but dispensable for B cell survival. Mol Immunol 2009; 47:590-9. [PMID: 19815275 DOI: 10.1016/j.molimm.2009.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/03/2009] [Indexed: 02/02/2023]
Abstract
BAFF-R (B cell-activating factor belonging to the tumor necrosis factor family receptor) regulates B lymphocyte survival, maturation, homeostasis, and self-tolerance through signaling mechanisms that are not completely understood. A spontaneous BAFF-R mutation, Bcmd-1, disrupts BAFF-R signaling. However, it is not clear why the Bcmd-1-encoded BAFF-R fails to adequately support B cell survival, optimal CD21/35 expression, and B-cell tolerance to dsDNA, since it is 95% identical to the wild-type (wt) BAFF-R and retains the only known signaling motif. A retrotransposon insertion in A/WySnJ strain mice generated the Bcmd-1 allele, replacing the eight C-terminal BAFF-R residues with 21 retrotransposon-encoded residues. New data reported here show that the displaced residues, previously thought to have no signaling role, are essential for optimal CD21/35 expression but contribute little to B cell survival signaling. Analysis of wt Baffr or Bcmd-1 homozygous (A/WySnJ X B6.BCL2)F2 mice confirmed that BCL2 complemented Bcmd-1 for B cell survival but not CD21/35 expression. Through in vivo retroviral transduction experiments, we show that Baffr complemented Bcmd-1 for B cell survival but not CD21/35 expression, whereas the BaffrDelta103-175 deletion mutant lacking the BAFF-R cytoplasmic domain failed to support these functions. Importantly, we show that the BaffrDelta168-175 deletion mutant lacking the retrotransposon-displaced residues, and a BaffrT170A mutant lacking a critical threonine, supported B cell survival but failed to support optimal CD21/35 expression. These data provide the first evidence for a possible bifurcation at the receptor level in the BAFF-R signaling pathway. We suggest that discrete BAFF-R cytoplasmic domains may interact with distinct downstream pathways to provide fine control over B cell survival, maturation, and tolerance induction.
Collapse
Affiliation(s)
- Christopher G Mayne
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | | | | |
Collapse
|
18
|
Pahl MV, Gollapudi S, Sepassi L, Gollapudi P, Elahimehr R, Vaziri ND. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol Dial Transplant 2009; 25:205-12. [PMID: 19684120 PMCID: PMC2796898 DOI: 10.1093/ndt/gfp397] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND End-stage renal disease (ESRD) results in increased susceptibility to infections, impaired response to vaccination and diffuse B-cell lymphopenia. However, the precise nature and mechanism of ESRD-induced B-cell lymphopenia remains unclear. Therefore, we studied the distribution of major B-cell subsets, B-cell growth, differentiation and survival factors, IL-7 and BAFF, and their receptors in 21 haemodialysis patients and 21 controls. METHODS Innate B1 cells (CD19+, CD5+), conventional B2 cells (CD19+, CD5-), newly formed transitional B cells (CD19+, CD10+, CD27-), naïve B cells (CD19+, CD27-) and memory B cells (CD19+, CD27+) and BAFF receptor were quantified by flow cytometry. Plasma IL-7, BAFF, IL-6, TNF-alpha and IL-10 were measured by ELISA. RESULTS The ESRD group exhibited significant reductions of all B-cell subpopulations except for transitional B cells that were less severely affected. No significant difference was found in B-cell apoptosis between the ESRD and control groups. Moreover, plasma IL-7 and BAFF levels were elevated in ESRD patients, therefore excluding their deficiencies as a possible culprit. However, BAFF receptor expression was significantly reduced in transitional but not mature B cells in the ESRD group. Interestingly, B-cell activation with the TLR9 agonist resulted in significantly greater production of IL-6 and TNF alpha but not IL-10 in the ESRD group. CONCLUSIONS Thus, despite elevation of B-cell growth, differentiation and survival factors, ESRD patients exhibited diffuse reduction of B-cell subpopulations. This was associated with the down-regulation of BAFF receptor in transitional B cells. The latter can, in part, contribute to B-cell lymphopenia by promoting resistance to the biological actions of BAFF that is a potent B-cell differentiation and survival factor.
Collapse
Affiliation(s)
- Madeleine V Pahl
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mayne CG, Nashold FE, Sasaki Y, Hayes CE. Altered BAFF-receptor signaling and additional modifier loci contribute to systemic autoimmunity in A/WySnJ mice. Eur J Immunol 2009; 39:589-99. [PMID: 19152335 DOI: 10.1002/eji.200838569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus pathology reflects autoantibody-mediated damage due to a failure of B-lymphocyte tolerance. We previously reported that B-lymphopenic A/WySnJ mice develop a lupus-like syndrome and linked this syndrome to the B-cell maturation defect-1 (Bcmd-1) mutant allele of the B-cell-activating factor belonging to the TNF family-receptor (Baffr) gene. Here, we further evaluate the genetic basis for autoimmunity in A/WySnJ mice. We produced B6.Bcmd-1 and AW.Baffr(-/-) congenic mice (N5), and compared them with B6.Baffr(-/-) and A/WySnJ mice with respect to B-lymphocyte development. Bcmd-1-expressing mice had more B cells with greater maturity than Baffr(-/-) mice regardless of genetic background, indicating that Bcmd-1 encodes a partially functional BAFF-R. We also compared these mice for lupus phenotypes to determine whether Bcmd-1 is necessary and sufficient for disease, or whether the Baffr(-/-) (-) allele can also cause autoimmunity. The Baffr(-/-) allele did not lead to autoimmunity on either genetic background. In contrast, the Bcmd-1 allele was necessary and sufficient for development of low levels of IgM autoantibodies in B6.Bcmd-1 mice. However, Bcmd-1 plus unidentified A/WySnJ modifier genes were necessary for development of IgG autoantibodies and renal pathology. We propose that in A/WySnJ mice an excess of BAFF per B cell rescues self-reactive B cells through a partially functional BAFF-R in a B-lymphopenic environment.
Collapse
|